Properties

Label 2-28-7.3-c4-0-1
Degree 22
Conductor 2828
Sign 0.921+0.387i0.921 + 0.387i
Analytic cond. 2.894352.89435
Root an. cond. 1.701281.70128
Motivic weight 44
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.35 − 0.784i)3-s + (38.3 − 22.1i)5-s + (42.3 + 24.5i)7-s + (−39.2 − 68.0i)9-s + (−11.7 + 20.3i)11-s + 136. i·13-s − 69.4·15-s + (−227. − 131. i)17-s + (−387. + 223. i)19-s + (−38.3 − 66.6i)21-s + (374. + 648. i)23-s + (667. − 1.15e3i)25-s + 250. i·27-s + 406.·29-s + (−584. − 337. i)31-s + ⋯
L(s)  = 1  + (−0.151 − 0.0871i)3-s + (1.53 − 0.885i)5-s + (0.865 + 0.501i)7-s + (−0.484 − 0.839i)9-s + (−0.0971 + 0.168i)11-s + 0.806i·13-s − 0.308·15-s + (−0.786 − 0.454i)17-s + (−1.07 + 0.619i)19-s + (−0.0869 − 0.151i)21-s + (0.708 + 1.22i)23-s + (1.06 − 1.84i)25-s + 0.343i·27-s + 0.483·29-s + (−0.607 − 0.350i)31-s + ⋯

Functional equation

Λ(s)=(28s/2ΓC(s)L(s)=((0.921+0.387i)Λ(5s)\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(5-s) \end{aligned}
Λ(s)=(28s/2ΓC(s+2)L(s)=((0.921+0.387i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.921 + 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 2828    =    2272^{2} \cdot 7
Sign: 0.921+0.387i0.921 + 0.387i
Analytic conductor: 2.894352.89435
Root analytic conductor: 1.701281.70128
Motivic weight: 44
Rational: no
Arithmetic: yes
Character: χ28(17,)\chi_{28} (17, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 28, ( :2), 0.921+0.387i)(2,\ 28,\ (\ :2),\ 0.921 + 0.387i)

Particular Values

L(52)L(\frac{5}{2}) \approx 1.553400.313612i1.55340 - 0.313612i
L(12)L(\frac12) \approx 1.553400.313612i1.55340 - 0.313612i
L(3)L(3) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1+(42.324.5i)T 1 + (-42.3 - 24.5i)T
good3 1+(1.35+0.784i)T+(40.5+70.1i)T2 1 + (1.35 + 0.784i)T + (40.5 + 70.1i)T^{2}
5 1+(38.3+22.1i)T+(312.5541.i)T2 1 + (-38.3 + 22.1i)T + (312.5 - 541. i)T^{2}
11 1+(11.720.3i)T+(7.32e31.26e4i)T2 1 + (11.7 - 20.3i)T + (-7.32e3 - 1.26e4i)T^{2}
13 1136.iT2.85e4T2 1 - 136. iT - 2.85e4T^{2}
17 1+(227.+131.i)T+(4.17e4+7.23e4i)T2 1 + (227. + 131. i)T + (4.17e4 + 7.23e4i)T^{2}
19 1+(387.223.i)T+(6.51e41.12e5i)T2 1 + (387. - 223. i)T + (6.51e4 - 1.12e5i)T^{2}
23 1+(374.648.i)T+(1.39e5+2.42e5i)T2 1 + (-374. - 648. i)T + (-1.39e5 + 2.42e5i)T^{2}
29 1406.T+7.07e5T2 1 - 406.T + 7.07e5T^{2}
31 1+(584.+337.i)T+(4.61e5+7.99e5i)T2 1 + (584. + 337. i)T + (4.61e5 + 7.99e5i)T^{2}
37 1+(372.+645.i)T+(9.37e5+1.62e6i)T2 1 + (372. + 645. i)T + (-9.37e5 + 1.62e6i)T^{2}
41 12.47e3iT2.82e6T2 1 - 2.47e3iT - 2.82e6T^{2}
43 1+2.63e3T+3.41e6T2 1 + 2.63e3T + 3.41e6T^{2}
47 1+(579.334.i)T+(2.43e64.22e6i)T2 1 + (579. - 334. i)T + (2.43e6 - 4.22e6i)T^{2}
53 1+(1.01e3+1.75e3i)T+(3.94e66.83e6i)T2 1 + (-1.01e3 + 1.75e3i)T + (-3.94e6 - 6.83e6i)T^{2}
59 1+(1.01e3+585.i)T+(6.05e6+1.04e7i)T2 1 + (1.01e3 + 585. i)T + (6.05e6 + 1.04e7i)T^{2}
61 1+(2.02e31.16e3i)T+(6.92e61.19e7i)T2 1 + (2.02e3 - 1.16e3i)T + (6.92e6 - 1.19e7i)T^{2}
67 1+(3.77e3+6.54e3i)T+(1.00e71.74e7i)T2 1 + (-3.77e3 + 6.54e3i)T + (-1.00e7 - 1.74e7i)T^{2}
71 17.57e3T+2.54e7T2 1 - 7.57e3T + 2.54e7T^{2}
73 1+(3.28e31.89e3i)T+(1.41e7+2.45e7i)T2 1 + (-3.28e3 - 1.89e3i)T + (1.41e7 + 2.45e7i)T^{2}
79 1+(3.89e3+6.75e3i)T+(1.94e7+3.37e7i)T2 1 + (3.89e3 + 6.75e3i)T + (-1.94e7 + 3.37e7i)T^{2}
83 12.18e3iT4.74e7T2 1 - 2.18e3iT - 4.74e7T^{2}
89 1+(8.05e3+4.64e3i)T+(3.13e75.43e7i)T2 1 + (-8.05e3 + 4.64e3i)T + (3.13e7 - 5.43e7i)T^{2}
97 1+9.98e3iT8.85e7T2 1 + 9.98e3iT - 8.85e7T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−16.74446766843733654455122525384, −15.00292285037885964820613862467, −13.86697844049336044157045620747, −12.68642173916509162703112111361, −11.38606255032621461100265094830, −9.558582809921076026651889991812, −8.674760391305448618824857250066, −6.30597490567660162390187619599, −5.00667049790379191886197397047, −1.80689940933409746069633287096, 2.31532916365648205235693675108, 5.16750799135441965390962438282, 6.67792386087337301726429095801, 8.540182932206538752322731057512, 10.49092140934562258115353080819, 10.85936506646538165828397582482, 13.14126412476617304548406991666, 14.04691261900454492100049185574, 15.03647174950760246300832044207, 16.99277902597652870338454631373

Graph of the ZZ-function along the critical line