L(s) = 1 | + 3i·3-s − i·5-s − 6·9-s + i·11-s − 6i·13-s + 3·15-s − 4·17-s + 6i·19-s − 3·23-s + 4·25-s − 9i·27-s − 4i·29-s − 9·31-s − 3·33-s − 7i·37-s + ⋯ |
L(s) = 1 | + 1.73i·3-s − 0.447i·5-s − 2·9-s + 0.301i·11-s − 1.66i·13-s + 0.774·15-s − 0.970·17-s + 1.37i·19-s − 0.625·23-s + 0.800·25-s − 1.73i·27-s − 0.742i·29-s − 1.61·31-s − 0.522·33-s − 1.15i·37-s + ⋯ |
Λ(s)=(=(2816s/2ΓC(s)L(s)(0.707+0.707i)Λ(2−s)
Λ(s)=(=(2816s/2ΓC(s+1/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
2816
= 28⋅11
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
22.4858 |
Root analytic conductor: |
4.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2816(1409,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2816, ( :1/2), 0.707+0.707i)
|
Particular Values
L(1) |
≈ |
0.8094066942 |
L(21) |
≈ |
0.8094066942 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−iT |
good | 3 | 1−3iT−3T2 |
| 5 | 1+iT−5T2 |
| 7 | 1+7T2 |
| 13 | 1+6iT−13T2 |
| 17 | 1+4T+17T2 |
| 19 | 1−6iT−19T2 |
| 23 | 1+3T+23T2 |
| 29 | 1+4iT−29T2 |
| 31 | 1+9T+31T2 |
| 37 | 1+7iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+6iT−43T2 |
| 47 | 1−12T+47T2 |
| 53 | 1+2iT−53T2 |
| 59 | 1+9iT−59T2 |
| 61 | 1−8iT−61T2 |
| 67 | 1+15iT−67T2 |
| 71 | 1−3T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1+6T+79T2 |
| 83 | 1+6iT−83T2 |
| 89 | 1−5T+89T2 |
| 97 | 1+3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.828166532879313063266760358486, −8.203231858226989815633773288995, −7.37429782400931558499658528270, −5.95923148958372934368105614052, −5.51890285313055267382068267363, −4.73989642467808185576099402811, −3.94386681295991909761339123533, −3.35202094195077612571948163769, −2.15859539392913729547004501638, −0.26483538563779084555808931266,
1.20056245821313530318904163647, 2.16227545382332574653939063753, 2.82752987980947634028591631281, 4.11146394682894729592621045229, 5.16248964374009870609883321588, 6.25325784827471714775020220923, 6.77404503145119496374355093687, 7.11198342021762712135026152189, 7.970929161623730609973162627095, 8.965815256709578061755701176364