L(s) = 1 | + (−0.538 + 0.538i)2-s + (1.54 + 0.777i)3-s + 1.42i·4-s + (1.01 − 1.99i)5-s + (−1.25 + 0.415i)6-s + (1.88 + 1.88i)7-s + (−1.84 − 1.84i)8-s + (1.79 + 2.40i)9-s + (0.524 + 1.62i)10-s − 1.35i·11-s + (−1.10 + 2.19i)12-s + (1.03 − 1.03i)13-s − 2.02·14-s + (3.12 − 2.29i)15-s − 0.856·16-s + (−1.42 + 1.42i)17-s + ⋯ |
L(s) = 1 | + (−0.380 + 0.380i)2-s + (0.893 + 0.448i)3-s + 0.710i·4-s + (0.455 − 0.890i)5-s + (−0.511 + 0.169i)6-s + (0.711 + 0.711i)7-s + (−0.651 − 0.651i)8-s + (0.597 + 0.801i)9-s + (0.165 + 0.512i)10-s − 0.409i·11-s + (−0.318 + 0.634i)12-s + (0.288 − 0.288i)13-s − 0.541·14-s + (0.806 − 0.591i)15-s − 0.214·16-s + (−0.345 + 0.345i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.374 - 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.374 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.27824 + 0.861901i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.27824 + 0.861901i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.54 - 0.777i)T \) |
| 5 | \( 1 + (-1.01 + 1.99i)T \) |
| 19 | \( 1 - iT \) |
good | 2 | \( 1 + (0.538 - 0.538i)T - 2iT^{2} \) |
| 7 | \( 1 + (-1.88 - 1.88i)T + 7iT^{2} \) |
| 11 | \( 1 + 1.35iT - 11T^{2} \) |
| 13 | \( 1 + (-1.03 + 1.03i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.42 - 1.42i)T - 17iT^{2} \) |
| 23 | \( 1 + (1.15 + 1.15i)T + 23iT^{2} \) |
| 29 | \( 1 + 4.57T + 29T^{2} \) |
| 31 | \( 1 + 4.81T + 31T^{2} \) |
| 37 | \( 1 + (-2.99 - 2.99i)T + 37iT^{2} \) |
| 41 | \( 1 - 8.00iT - 41T^{2} \) |
| 43 | \( 1 + (-5.08 + 5.08i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.64 + 6.64i)T - 47iT^{2} \) |
| 53 | \( 1 + (7.34 + 7.34i)T + 53iT^{2} \) |
| 59 | \( 1 - 1.44T + 59T^{2} \) |
| 61 | \( 1 + 8.86T + 61T^{2} \) |
| 67 | \( 1 + (2.63 + 2.63i)T + 67iT^{2} \) |
| 71 | \( 1 + 4.15iT - 71T^{2} \) |
| 73 | \( 1 + (-10.4 + 10.4i)T - 73iT^{2} \) |
| 79 | \( 1 + 13.1iT - 79T^{2} \) |
| 83 | \( 1 + (-5.76 - 5.76i)T + 83iT^{2} \) |
| 89 | \( 1 + 15.3T + 89T^{2} \) |
| 97 | \( 1 + (6.91 + 6.91i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.17024341124234980911405734895, −10.99747506974957067550931015058, −9.682995738073443043149087968191, −8.882556972003897326547524604009, −8.387077463683960989546206244850, −7.61948102909775845288940230940, −6.01530958426357082149786903960, −4.79147048293473680247101226384, −3.57923093320945749115951098759, −2.08190425512352371396647719257,
1.52716818507575925836757234439, 2.58212441661522093378193821347, 4.16085227855309817224790577894, 5.79231246348399298672219063086, 6.96027839264144736751780459639, 7.71550939187651938970260857011, 9.087857201070848731652990423645, 9.656306243621018949863133491750, 10.77016945758666160330913454522, 11.24442034876770159619300722573