L(s) = 1 | + (−0.538 + 0.538i)2-s + (1.54 + 0.777i)3-s + 1.42i·4-s + (1.01 − 1.99i)5-s + (−1.25 + 0.415i)6-s + (1.88 + 1.88i)7-s + (−1.84 − 1.84i)8-s + (1.79 + 2.40i)9-s + (0.524 + 1.62i)10-s − 1.35i·11-s + (−1.10 + 2.19i)12-s + (1.03 − 1.03i)13-s − 2.02·14-s + (3.12 − 2.29i)15-s − 0.856·16-s + (−1.42 + 1.42i)17-s + ⋯ |
L(s) = 1 | + (−0.380 + 0.380i)2-s + (0.893 + 0.448i)3-s + 0.710i·4-s + (0.455 − 0.890i)5-s + (−0.511 + 0.169i)6-s + (0.711 + 0.711i)7-s + (−0.651 − 0.651i)8-s + (0.597 + 0.801i)9-s + (0.165 + 0.512i)10-s − 0.409i·11-s + (−0.318 + 0.634i)12-s + (0.288 − 0.288i)13-s − 0.541·14-s + (0.806 − 0.591i)15-s − 0.214·16-s + (−0.345 + 0.345i)17-s + ⋯ |
Λ(s)=(=(285s/2ΓC(s)L(s)(0.374−0.927i)Λ(2−s)
Λ(s)=(=(285s/2ΓC(s+1/2)L(s)(0.374−0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
285
= 3⋅5⋅19
|
Sign: |
0.374−0.927i
|
Analytic conductor: |
2.27573 |
Root analytic conductor: |
1.50855 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ285(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 285, ( :1/2), 0.374−0.927i)
|
Particular Values
L(1) |
≈ |
1.27824+0.861901i |
L(21) |
≈ |
1.27824+0.861901i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.54−0.777i)T |
| 5 | 1+(−1.01+1.99i)T |
| 19 | 1−iT |
good | 2 | 1+(0.538−0.538i)T−2iT2 |
| 7 | 1+(−1.88−1.88i)T+7iT2 |
| 11 | 1+1.35iT−11T2 |
| 13 | 1+(−1.03+1.03i)T−13iT2 |
| 17 | 1+(1.42−1.42i)T−17iT2 |
| 23 | 1+(1.15+1.15i)T+23iT2 |
| 29 | 1+4.57T+29T2 |
| 31 | 1+4.81T+31T2 |
| 37 | 1+(−2.99−2.99i)T+37iT2 |
| 41 | 1−8.00iT−41T2 |
| 43 | 1+(−5.08+5.08i)T−43iT2 |
| 47 | 1+(−6.64+6.64i)T−47iT2 |
| 53 | 1+(7.34+7.34i)T+53iT2 |
| 59 | 1−1.44T+59T2 |
| 61 | 1+8.86T+61T2 |
| 67 | 1+(2.63+2.63i)T+67iT2 |
| 71 | 1+4.15iT−71T2 |
| 73 | 1+(−10.4+10.4i)T−73iT2 |
| 79 | 1+13.1iT−79T2 |
| 83 | 1+(−5.76−5.76i)T+83iT2 |
| 89 | 1+15.3T+89T2 |
| 97 | 1+(6.91+6.91i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.17024341124234980911405734895, −10.99747506974957067550931015058, −9.682995738073443043149087968191, −8.882556972003897326547524604009, −8.387077463683960989546206244850, −7.61948102909775845288940230940, −6.01530958426357082149786903960, −4.79147048293473680247101226384, −3.57923093320945749115951098759, −2.08190425512352371396647719257,
1.52716818507575925836757234439, 2.58212441661522093378193821347, 4.16085227855309817224790577894, 5.79231246348399298672219063086, 6.96027839264144736751780459639, 7.71550939187651938970260857011, 9.087857201070848731652990423645, 9.656306243621018949863133491750, 10.77016945758666160330913454522, 11.24442034876770159619300722573