L(s) = 1 | + (0.766 − 0.642i)2-s + (0.939 + 0.342i)3-s + (0.173 − 0.984i)4-s + (0.939 − 0.342i)6-s + (0.5 − 0.866i)7-s + (−0.500 − 0.866i)8-s + (0.499 − 0.866i)12-s + (0.939 − 0.342i)13-s + (−0.173 − 0.984i)14-s + (−0.939 − 0.342i)16-s + (−0.766 + 0.642i)17-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (−0.173 − 0.984i)24-s + (−0.939 + 0.342i)25-s + (0.5 − 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (0.939 + 0.342i)3-s + (0.173 − 0.984i)4-s + (0.939 − 0.342i)6-s + (0.5 − 0.866i)7-s + (−0.500 − 0.866i)8-s + (0.499 − 0.866i)12-s + (0.939 − 0.342i)13-s + (−0.173 − 0.984i)14-s + (−0.939 − 0.342i)16-s + (−0.766 + 0.642i)17-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (−0.173 − 0.984i)24-s + (−0.939 + 0.342i)25-s + (0.5 − 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.158 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.158 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.570937469\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.570937469\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 + 0.642i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 5 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 2T + T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (-1.53 - 1.28i)T + (0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.039595094799104568286263309951, −7.973050191379790988848004046344, −7.48132727229362027685125182894, −6.14714849306925550611210927578, −5.77761721116739746037374203978, −4.34630084337442517755839772711, −4.07017028133501464171808483539, −3.26466141831699413286017230888, −2.29879396054893232067188507500, −1.23975014860829332595279265172,
2.04425037369161743377614303855, 2.54569677714035643723894144212, 3.59642277608225738382707716345, 4.41879634810256802453526232497, 5.34632040136139202675750114620, 6.05470782512826033087256583503, 6.84175561773707240901384118070, 7.71214043812003690708958519178, 8.278669968715083776459683061624, 8.848601459222200494409246312141