L(s) = 1 | + (0.766 − 0.642i)2-s + (0.939 + 0.342i)3-s + (0.173 − 0.984i)4-s + (0.939 − 0.342i)6-s + (0.5 − 0.866i)7-s + (−0.500 − 0.866i)8-s + (0.499 − 0.866i)12-s + (0.939 − 0.342i)13-s + (−0.173 − 0.984i)14-s + (−0.939 − 0.342i)16-s + (−0.766 + 0.642i)17-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (−0.173 − 0.984i)24-s + (−0.939 + 0.342i)25-s + (0.5 − 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (0.939 + 0.342i)3-s + (0.173 − 0.984i)4-s + (0.939 − 0.342i)6-s + (0.5 − 0.866i)7-s + (−0.500 − 0.866i)8-s + (0.499 − 0.866i)12-s + (0.939 − 0.342i)13-s + (−0.173 − 0.984i)14-s + (−0.939 − 0.342i)16-s + (−0.766 + 0.642i)17-s + (0.766 − 0.642i)21-s + (−0.173 + 0.984i)23-s + (−0.173 − 0.984i)24-s + (−0.939 + 0.342i)25-s + (0.5 − 0.866i)26-s + ⋯ |
Λ(s)=(=(2888s/2ΓC(s)L(s)(0.158+0.987i)Λ(1−s)
Λ(s)=(=(2888s/2ΓC(s)L(s)(0.158+0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
2888
= 23⋅192
|
Sign: |
0.158+0.987i
|
Analytic conductor: |
1.44129 |
Root analytic conductor: |
1.20054 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2888(2293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2888, ( :0), 0.158+0.987i)
|
Particular Values
L(21) |
≈ |
2.570937469 |
L(21) |
≈ |
2.570937469 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.766+0.642i)T |
| 19 | 1 |
good | 3 | 1+(−0.939−0.342i)T+(0.766+0.642i)T2 |
| 5 | 1+(0.939−0.342i)T2 |
| 7 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 17 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 23 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 29 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−2T+T2 |
| 41 | 1+(−0.766−0.642i)T2 |
| 43 | 1+(0.939−0.342i)T2 |
| 47 | 1+(−1.53−1.28i)T+(0.173+0.984i)T2 |
| 53 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 59 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 61 | 1+(0.939+0.342i)T2 |
| 67 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
| 71 | 1+(0.939−0.342i)T2 |
| 73 | 1+(−0.939−0.342i)T+(0.766+0.642i)T2 |
| 79 | 1+(−0.766−0.642i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+(−0.766+0.642i)T2 |
| 97 | 1+(−0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.039595094799104568286263309951, −7.973050191379790988848004046344, −7.48132727229362027685125182894, −6.14714849306925550611210927578, −5.77761721116739746037374203978, −4.34630084337442517755839772711, −4.07017028133501464171808483539, −3.26466141831699413286017230888, −2.29879396054893232067188507500, −1.23975014860829332595279265172,
2.04425037369161743377614303855, 2.54569677714035643723894144212, 3.59642277608225738382707716345, 4.41879634810256802453526232497, 5.34632040136139202675750114620, 6.05470782512826033087256583503, 6.84175561773707240901384118070, 7.71214043812003690708958519178, 8.278669968715083776459683061624, 8.848601459222200494409246312141