Properties

Label 2-28e2-1.1-c5-0-10
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.55·3-s − 41.6·5-s − 230.·9-s − 110.·11-s + 179.·13-s + 148.·15-s − 355.·17-s − 1.95e3·19-s − 1.54e3·23-s − 1.39e3·25-s + 1.68e3·27-s + 6.27e3·29-s − 6.00e3·31-s + 394.·33-s − 9.68e3·37-s − 637.·39-s + 1.05e4·41-s − 6.71e3·43-s + 9.59e3·45-s − 2.72e4·47-s + 1.26e3·51-s − 3.26e4·53-s + 4.61e3·55-s + 6.96e3·57-s + 492.·59-s + 4.05e4·61-s − 7.45e3·65-s + ⋯
L(s)  = 1  − 0.228·3-s − 0.744·5-s − 0.947·9-s − 0.275·11-s + 0.293·13-s + 0.170·15-s − 0.298·17-s − 1.24·19-s − 0.609·23-s − 0.445·25-s + 0.444·27-s + 1.38·29-s − 1.12·31-s + 0.0630·33-s − 1.16·37-s − 0.0671·39-s + 0.982·41-s − 0.553·43-s + 0.706·45-s − 1.79·47-s + 0.0681·51-s − 1.59·53-s + 0.205·55-s + 0.283·57-s + 0.0184·59-s + 1.39·61-s − 0.218·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5504955798\)
\(L(\frac12)\) \(\approx\) \(0.5504955798\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 3.55T + 243T^{2} \)
5 \( 1 + 41.6T + 3.12e3T^{2} \)
11 \( 1 + 110.T + 1.61e5T^{2} \)
13 \( 1 - 179.T + 3.71e5T^{2} \)
17 \( 1 + 355.T + 1.41e6T^{2} \)
19 \( 1 + 1.95e3T + 2.47e6T^{2} \)
23 \( 1 + 1.54e3T + 6.43e6T^{2} \)
29 \( 1 - 6.27e3T + 2.05e7T^{2} \)
31 \( 1 + 6.00e3T + 2.86e7T^{2} \)
37 \( 1 + 9.68e3T + 6.93e7T^{2} \)
41 \( 1 - 1.05e4T + 1.15e8T^{2} \)
43 \( 1 + 6.71e3T + 1.47e8T^{2} \)
47 \( 1 + 2.72e4T + 2.29e8T^{2} \)
53 \( 1 + 3.26e4T + 4.18e8T^{2} \)
59 \( 1 - 492.T + 7.14e8T^{2} \)
61 \( 1 - 4.05e4T + 8.44e8T^{2} \)
67 \( 1 - 7.68e3T + 1.35e9T^{2} \)
71 \( 1 + 7.78e4T + 1.80e9T^{2} \)
73 \( 1 - 7.39e4T + 2.07e9T^{2} \)
79 \( 1 - 4.39e4T + 3.07e9T^{2} \)
83 \( 1 + 4.11e4T + 3.93e9T^{2} \)
89 \( 1 - 6.57e4T + 5.58e9T^{2} \)
97 \( 1 + 6.85e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.504688903201372773616667437317, −8.405472605964590686478805477834, −8.115826042974418209714242727996, −6.85337835563673204102868182485, −6.08372543334005809965350966485, −5.06534609785773161694605554344, −4.07808164414114748464937149011, −3.10776246343891991269206119607, −1.91656849552959566734785572963, −0.32806566479988769799584845721, 0.32806566479988769799584845721, 1.91656849552959566734785572963, 3.10776246343891991269206119607, 4.07808164414114748464937149011, 5.06534609785773161694605554344, 6.08372543334005809965350966485, 6.85337835563673204102868182485, 8.115826042974418209714242727996, 8.405472605964590686478805477834, 9.504688903201372773616667437317

Graph of the $Z$-function along the critical line