L(s) = 1 | − 3.55·3-s − 41.6·5-s − 230.·9-s − 110.·11-s + 179.·13-s + 148.·15-s − 355.·17-s − 1.95e3·19-s − 1.54e3·23-s − 1.39e3·25-s + 1.68e3·27-s + 6.27e3·29-s − 6.00e3·31-s + 394.·33-s − 9.68e3·37-s − 637.·39-s + 1.05e4·41-s − 6.71e3·43-s + 9.59e3·45-s − 2.72e4·47-s + 1.26e3·51-s − 3.26e4·53-s + 4.61e3·55-s + 6.96e3·57-s + 492.·59-s + 4.05e4·61-s − 7.45e3·65-s + ⋯ |
L(s) = 1 | − 0.228·3-s − 0.744·5-s − 0.947·9-s − 0.275·11-s + 0.293·13-s + 0.170·15-s − 0.298·17-s − 1.24·19-s − 0.609·23-s − 0.445·25-s + 0.444·27-s + 1.38·29-s − 1.12·31-s + 0.0630·33-s − 1.16·37-s − 0.0671·39-s + 0.982·41-s − 0.553·43-s + 0.706·45-s − 1.79·47-s + 0.0681·51-s − 1.59·53-s + 0.205·55-s + 0.283·57-s + 0.0184·59-s + 1.39·61-s − 0.218·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.5504955798\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5504955798\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 3.55T + 243T^{2} \) |
| 5 | \( 1 + 41.6T + 3.12e3T^{2} \) |
| 11 | \( 1 + 110.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 179.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 355.T + 1.41e6T^{2} \) |
| 19 | \( 1 + 1.95e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 1.54e3T + 6.43e6T^{2} \) |
| 29 | \( 1 - 6.27e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 6.00e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 9.68e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.05e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 6.71e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 2.72e4T + 2.29e8T^{2} \) |
| 53 | \( 1 + 3.26e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 492.T + 7.14e8T^{2} \) |
| 61 | \( 1 - 4.05e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 7.68e3T + 1.35e9T^{2} \) |
| 71 | \( 1 + 7.78e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 7.39e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 4.39e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 4.11e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 6.57e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 6.85e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.504688903201372773616667437317, −8.405472605964590686478805477834, −8.115826042974418209714242727996, −6.85337835563673204102868182485, −6.08372543334005809965350966485, −5.06534609785773161694605554344, −4.07808164414114748464937149011, −3.10776246343891991269206119607, −1.91656849552959566734785572963, −0.32806566479988769799584845721,
0.32806566479988769799584845721, 1.91656849552959566734785572963, 3.10776246343891991269206119607, 4.07808164414114748464937149011, 5.06534609785773161694605554344, 6.08372543334005809965350966485, 6.85337835563673204102868182485, 8.115826042974418209714242727996, 8.405472605964590686478805477834, 9.504688903201372773616667437317