L(s) = 1 | − 3.55·3-s − 41.6·5-s − 230.·9-s − 110.·11-s + 179.·13-s + 148.·15-s − 355.·17-s − 1.95e3·19-s − 1.54e3·23-s − 1.39e3·25-s + 1.68e3·27-s + 6.27e3·29-s − 6.00e3·31-s + 394.·33-s − 9.68e3·37-s − 637.·39-s + 1.05e4·41-s − 6.71e3·43-s + 9.59e3·45-s − 2.72e4·47-s + 1.26e3·51-s − 3.26e4·53-s + 4.61e3·55-s + 6.96e3·57-s + 492.·59-s + 4.05e4·61-s − 7.45e3·65-s + ⋯ |
L(s) = 1 | − 0.228·3-s − 0.744·5-s − 0.947·9-s − 0.275·11-s + 0.293·13-s + 0.170·15-s − 0.298·17-s − 1.24·19-s − 0.609·23-s − 0.445·25-s + 0.444·27-s + 1.38·29-s − 1.12·31-s + 0.0630·33-s − 1.16·37-s − 0.0671·39-s + 0.982·41-s − 0.553·43-s + 0.706·45-s − 1.79·47-s + 0.0681·51-s − 1.59·53-s + 0.205·55-s + 0.283·57-s + 0.0184·59-s + 1.39·61-s − 0.218·65-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(784s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.5504955798 |
L(21) |
≈ |
0.5504955798 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+3.55T+243T2 |
| 5 | 1+41.6T+3.12e3T2 |
| 11 | 1+110.T+1.61e5T2 |
| 13 | 1−179.T+3.71e5T2 |
| 17 | 1+355.T+1.41e6T2 |
| 19 | 1+1.95e3T+2.47e6T2 |
| 23 | 1+1.54e3T+6.43e6T2 |
| 29 | 1−6.27e3T+2.05e7T2 |
| 31 | 1+6.00e3T+2.86e7T2 |
| 37 | 1+9.68e3T+6.93e7T2 |
| 41 | 1−1.05e4T+1.15e8T2 |
| 43 | 1+6.71e3T+1.47e8T2 |
| 47 | 1+2.72e4T+2.29e8T2 |
| 53 | 1+3.26e4T+4.18e8T2 |
| 59 | 1−492.T+7.14e8T2 |
| 61 | 1−4.05e4T+8.44e8T2 |
| 67 | 1−7.68e3T+1.35e9T2 |
| 71 | 1+7.78e4T+1.80e9T2 |
| 73 | 1−7.39e4T+2.07e9T2 |
| 79 | 1−4.39e4T+3.07e9T2 |
| 83 | 1+4.11e4T+3.93e9T2 |
| 89 | 1−6.57e4T+5.58e9T2 |
| 97 | 1+6.85e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.504688903201372773616667437317, −8.405472605964590686478805477834, −8.115826042974418209714242727996, −6.85337835563673204102868182485, −6.08372543334005809965350966485, −5.06534609785773161694605554344, −4.07808164414114748464937149011, −3.10776246343891991269206119607, −1.91656849552959566734785572963, −0.32806566479988769799584845721,
0.32806566479988769799584845721, 1.91656849552959566734785572963, 3.10776246343891991269206119607, 4.07808164414114748464937149011, 5.06534609785773161694605554344, 6.08372543334005809965350966485, 6.85337835563673204102868182485, 8.115826042974418209714242727996, 8.405472605964590686478805477834, 9.504688903201372773616667437317