Properties

Label 2-28e2-1.1-c5-0-25
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.9·3-s − 34.9·5-s − 19.1·9-s − 748.·11-s − 12.4·13-s − 523.·15-s + 2.21e3·17-s + 1.35e3·19-s − 3.02e3·23-s − 1.90e3·25-s − 3.92e3·27-s + 5.02e3·29-s − 4.55e3·31-s − 1.11e4·33-s − 1.04e3·37-s − 186.·39-s + 3.24e3·41-s + 2.86e3·43-s + 669.·45-s + 2.05e4·47-s + 3.31e4·51-s − 2.20e4·53-s + 2.61e4·55-s + 2.03e4·57-s − 1.88e4·59-s + 5.62e4·61-s + 436.·65-s + ⋯
L(s)  = 1  + 0.959·3-s − 0.625·5-s − 0.0786·9-s − 1.86·11-s − 0.0204·13-s − 0.600·15-s + 1.85·17-s + 0.862·19-s − 1.19·23-s − 0.608·25-s − 1.03·27-s + 1.10·29-s − 0.851·31-s − 1.78·33-s − 0.125·37-s − 0.0196·39-s + 0.301·41-s + 0.236·43-s + 0.0492·45-s + 1.35·47-s + 1.78·51-s − 1.07·53-s + 1.16·55-s + 0.827·57-s − 0.705·59-s + 1.93·61-s + 0.0128·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.018014720\)
\(L(\frac12)\) \(\approx\) \(2.018014720\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 14.9T + 243T^{2} \)
5 \( 1 + 34.9T + 3.12e3T^{2} \)
11 \( 1 + 748.T + 1.61e5T^{2} \)
13 \( 1 + 12.4T + 3.71e5T^{2} \)
17 \( 1 - 2.21e3T + 1.41e6T^{2} \)
19 \( 1 - 1.35e3T + 2.47e6T^{2} \)
23 \( 1 + 3.02e3T + 6.43e6T^{2} \)
29 \( 1 - 5.02e3T + 2.05e7T^{2} \)
31 \( 1 + 4.55e3T + 2.86e7T^{2} \)
37 \( 1 + 1.04e3T + 6.93e7T^{2} \)
41 \( 1 - 3.24e3T + 1.15e8T^{2} \)
43 \( 1 - 2.86e3T + 1.47e8T^{2} \)
47 \( 1 - 2.05e4T + 2.29e8T^{2} \)
53 \( 1 + 2.20e4T + 4.18e8T^{2} \)
59 \( 1 + 1.88e4T + 7.14e8T^{2} \)
61 \( 1 - 5.62e4T + 8.44e8T^{2} \)
67 \( 1 + 1.40e4T + 1.35e9T^{2} \)
71 \( 1 - 7.44e4T + 1.80e9T^{2} \)
73 \( 1 - 3.96e4T + 2.07e9T^{2} \)
79 \( 1 - 3.91e4T + 3.07e9T^{2} \)
83 \( 1 - 1.36e4T + 3.93e9T^{2} \)
89 \( 1 + 6.72e4T + 5.58e9T^{2} \)
97 \( 1 - 8.87e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.612177553404070233440197304701, −8.407315953104697870785575093956, −7.82324353666045478060152913350, −7.50641602870707467503818495041, −5.84008824497677940850339044713, −5.14582210140878800703956235036, −3.76957749205374689146933615675, −3.06880480942162575780622449277, −2.16778901206258942046495967187, −0.59598900651526776494752887366, 0.59598900651526776494752887366, 2.16778901206258942046495967187, 3.06880480942162575780622449277, 3.76957749205374689146933615675, 5.14582210140878800703956235036, 5.84008824497677940850339044713, 7.50641602870707467503818495041, 7.82324353666045478060152913350, 8.407315953104697870785575093956, 9.612177553404070233440197304701

Graph of the $Z$-function along the critical line