L(s) = 1 | + 14.9·3-s − 34.9·5-s − 19.1·9-s − 748.·11-s − 12.4·13-s − 523.·15-s + 2.21e3·17-s + 1.35e3·19-s − 3.02e3·23-s − 1.90e3·25-s − 3.92e3·27-s + 5.02e3·29-s − 4.55e3·31-s − 1.11e4·33-s − 1.04e3·37-s − 186.·39-s + 3.24e3·41-s + 2.86e3·43-s + 669.·45-s + 2.05e4·47-s + 3.31e4·51-s − 2.20e4·53-s + 2.61e4·55-s + 2.03e4·57-s − 1.88e4·59-s + 5.62e4·61-s + 436.·65-s + ⋯ |
L(s) = 1 | + 0.959·3-s − 0.625·5-s − 0.0786·9-s − 1.86·11-s − 0.0204·13-s − 0.600·15-s + 1.85·17-s + 0.862·19-s − 1.19·23-s − 0.608·25-s − 1.03·27-s + 1.10·29-s − 0.851·31-s − 1.78·33-s − 0.125·37-s − 0.0196·39-s + 0.301·41-s + 0.236·43-s + 0.0492·45-s + 1.35·47-s + 1.78·51-s − 1.07·53-s + 1.16·55-s + 0.827·57-s − 0.705·59-s + 1.93·61-s + 0.0128·65-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(784s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.018014720 |
L(21) |
≈ |
2.018014720 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1−14.9T+243T2 |
| 5 | 1+34.9T+3.12e3T2 |
| 11 | 1+748.T+1.61e5T2 |
| 13 | 1+12.4T+3.71e5T2 |
| 17 | 1−2.21e3T+1.41e6T2 |
| 19 | 1−1.35e3T+2.47e6T2 |
| 23 | 1+3.02e3T+6.43e6T2 |
| 29 | 1−5.02e3T+2.05e7T2 |
| 31 | 1+4.55e3T+2.86e7T2 |
| 37 | 1+1.04e3T+6.93e7T2 |
| 41 | 1−3.24e3T+1.15e8T2 |
| 43 | 1−2.86e3T+1.47e8T2 |
| 47 | 1−2.05e4T+2.29e8T2 |
| 53 | 1+2.20e4T+4.18e8T2 |
| 59 | 1+1.88e4T+7.14e8T2 |
| 61 | 1−5.62e4T+8.44e8T2 |
| 67 | 1+1.40e4T+1.35e9T2 |
| 71 | 1−7.44e4T+1.80e9T2 |
| 73 | 1−3.96e4T+2.07e9T2 |
| 79 | 1−3.91e4T+3.07e9T2 |
| 83 | 1−1.36e4T+3.93e9T2 |
| 89 | 1+6.72e4T+5.58e9T2 |
| 97 | 1−8.87e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.612177553404070233440197304701, −8.407315953104697870785575093956, −7.82324353666045478060152913350, −7.50641602870707467503818495041, −5.84008824497677940850339044713, −5.14582210140878800703956235036, −3.76957749205374689146933615675, −3.06880480942162575780622449277, −2.16778901206258942046495967187, −0.59598900651526776494752887366,
0.59598900651526776494752887366, 2.16778901206258942046495967187, 3.06880480942162575780622449277, 3.76957749205374689146933615675, 5.14582210140878800703956235036, 5.84008824497677940850339044713, 7.50641602870707467503818495041, 7.82324353666045478060152913350, 8.407315953104697870785575093956, 9.612177553404070233440197304701