Properties

Label 2-28e2-1.1-c5-0-38
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 28.9·3-s − 63.5·5-s + 593.·9-s + 592.·11-s + 433.·13-s + 1.83e3·15-s + 32.2·17-s + 2.71e3·19-s + 3.34e3·23-s + 911.·25-s − 1.01e4·27-s + 8.37e3·29-s + 3.30e3·31-s − 1.71e4·33-s − 812.·37-s − 1.25e4·39-s − 8.71e3·41-s + 9.72e3·43-s − 3.77e4·45-s + 2.02e4·47-s − 931.·51-s − 9.24e3·53-s − 3.76e4·55-s − 7.84e4·57-s + 4.03e3·59-s + 1.08e4·61-s − 2.75e4·65-s + ⋯
L(s)  = 1  − 1.85·3-s − 1.13·5-s + 2.44·9-s + 1.47·11-s + 0.711·13-s + 2.10·15-s + 0.0270·17-s + 1.72·19-s + 1.31·23-s + 0.291·25-s − 2.67·27-s + 1.84·29-s + 0.616·31-s − 2.73·33-s − 0.0976·37-s − 1.31·39-s − 0.809·41-s + 0.801·43-s − 2.77·45-s + 1.33·47-s − 0.0501·51-s − 0.452·53-s − 1.67·55-s − 3.19·57-s + 0.151·59-s + 0.374·61-s − 0.808·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.328582441\)
\(L(\frac12)\) \(\approx\) \(1.328582441\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 28.9T + 243T^{2} \)
5 \( 1 + 63.5T + 3.12e3T^{2} \)
11 \( 1 - 592.T + 1.61e5T^{2} \)
13 \( 1 - 433.T + 3.71e5T^{2} \)
17 \( 1 - 32.2T + 1.41e6T^{2} \)
19 \( 1 - 2.71e3T + 2.47e6T^{2} \)
23 \( 1 - 3.34e3T + 6.43e6T^{2} \)
29 \( 1 - 8.37e3T + 2.05e7T^{2} \)
31 \( 1 - 3.30e3T + 2.86e7T^{2} \)
37 \( 1 + 812.T + 6.93e7T^{2} \)
41 \( 1 + 8.71e3T + 1.15e8T^{2} \)
43 \( 1 - 9.72e3T + 1.47e8T^{2} \)
47 \( 1 - 2.02e4T + 2.29e8T^{2} \)
53 \( 1 + 9.24e3T + 4.18e8T^{2} \)
59 \( 1 - 4.03e3T + 7.14e8T^{2} \)
61 \( 1 - 1.08e4T + 8.44e8T^{2} \)
67 \( 1 - 5.27e4T + 1.35e9T^{2} \)
71 \( 1 + 5.22e4T + 1.80e9T^{2} \)
73 \( 1 + 5.07e4T + 2.07e9T^{2} \)
79 \( 1 - 7.98e4T + 3.07e9T^{2} \)
83 \( 1 + 4.64e4T + 3.93e9T^{2} \)
89 \( 1 - 1.48e5T + 5.58e9T^{2} \)
97 \( 1 + 2.96e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.729453785915402968593267172875, −8.717919353160189195309478059009, −7.48812976150430726643429608172, −6.81974524631339871573276629809, −6.09903446309787851583992669837, −5.06454733747955108408427717092, −4.29775340260411539503580771301, −3.39947993968634748494103914474, −1.12560671020745800498075026829, −0.77262241535927582462425627279, 0.77262241535927582462425627279, 1.12560671020745800498075026829, 3.39947993968634748494103914474, 4.29775340260411539503580771301, 5.06454733747955108408427717092, 6.09903446309787851583992669837, 6.81974524631339871573276629809, 7.48812976150430726643429608172, 8.717919353160189195309478059009, 9.729453785915402968593267172875

Graph of the $Z$-function along the critical line