Properties

Label 2-28e2-1.1-c5-0-46
Degree $2$
Conductor $784$
Sign $-1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 25.6·3-s − 28.7·5-s + 414.·9-s + 270.·11-s − 300.·13-s + 737.·15-s − 613.·17-s − 1.70e3·19-s − 3.18e3·23-s − 2.29e3·25-s − 4.40e3·27-s + 4.29e3·29-s + 2.02e3·31-s − 6.92e3·33-s + 5.15e3·37-s + 7.71e3·39-s + 7.14e3·41-s + 1.95e4·43-s − 1.19e4·45-s + 1.99e4·47-s + 1.57e4·51-s + 3.94e3·53-s − 7.76e3·55-s + 4.36e4·57-s − 2.97e4·59-s + 5.05e4·61-s + 8.64e3·65-s + ⋯
L(s)  = 1  − 1.64·3-s − 0.514·5-s + 1.70·9-s + 0.673·11-s − 0.493·13-s + 0.846·15-s − 0.514·17-s − 1.08·19-s − 1.25·23-s − 0.735·25-s − 1.16·27-s + 0.949·29-s + 0.379·31-s − 1.10·33-s + 0.618·37-s + 0.811·39-s + 0.663·41-s + 1.61·43-s − 0.878·45-s + 1.32·47-s + 0.846·51-s + 0.193·53-s − 0.346·55-s + 1.77·57-s − 1.11·59-s + 1.73·61-s + 0.253·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 25.6T + 243T^{2} \)
5 \( 1 + 28.7T + 3.12e3T^{2} \)
11 \( 1 - 270.T + 1.61e5T^{2} \)
13 \( 1 + 300.T + 3.71e5T^{2} \)
17 \( 1 + 613.T + 1.41e6T^{2} \)
19 \( 1 + 1.70e3T + 2.47e6T^{2} \)
23 \( 1 + 3.18e3T + 6.43e6T^{2} \)
29 \( 1 - 4.29e3T + 2.05e7T^{2} \)
31 \( 1 - 2.02e3T + 2.86e7T^{2} \)
37 \( 1 - 5.15e3T + 6.93e7T^{2} \)
41 \( 1 - 7.14e3T + 1.15e8T^{2} \)
43 \( 1 - 1.95e4T + 1.47e8T^{2} \)
47 \( 1 - 1.99e4T + 2.29e8T^{2} \)
53 \( 1 - 3.94e3T + 4.18e8T^{2} \)
59 \( 1 + 2.97e4T + 7.14e8T^{2} \)
61 \( 1 - 5.05e4T + 8.44e8T^{2} \)
67 \( 1 + 5.05e3T + 1.35e9T^{2} \)
71 \( 1 + 3.28e4T + 1.80e9T^{2} \)
73 \( 1 - 1.11e4T + 2.07e9T^{2} \)
79 \( 1 + 8.18e4T + 3.07e9T^{2} \)
83 \( 1 - 1.18e5T + 3.93e9T^{2} \)
89 \( 1 - 4.16e4T + 5.58e9T^{2} \)
97 \( 1 + 4.36e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.268534523482326171955663128888, −8.121340049307635827705013313140, −7.16710195815937774521569249382, −6.31241041136095772976598767488, −5.75690042585202149226125922469, −4.49346847522710412689369171761, −4.09069814619518151244127467890, −2.27166446622554228351210149928, −0.886221142913795246061684425110, 0, 0.886221142913795246061684425110, 2.27166446622554228351210149928, 4.09069814619518151244127467890, 4.49346847522710412689369171761, 5.75690042585202149226125922469, 6.31241041136095772976598767488, 7.16710195815937774521569249382, 8.121340049307635827705013313140, 9.268534523482326171955663128888

Graph of the $Z$-function along the critical line