L(s) = 1 | + 4.24·3-s − 65.0·5-s − 225·9-s − 274·11-s − 746.·13-s − 276·15-s − 171.·17-s + 575.·19-s − 2.75e3·23-s + 1.10e3·25-s − 1.98e3·27-s − 3.98e3·29-s − 7.42e3·31-s − 1.16e3·33-s + 1.24e4·37-s − 3.16e3·39-s − 1.12e4·41-s − 1.70e4·43-s + 1.46e4·45-s + 1.71e4·47-s − 725.·51-s + 3.35e4·53-s + 1.78e4·55-s + 2.44e3·57-s − 5.27e4·59-s − 2.87e4·61-s + 4.85e4·65-s + ⋯ |
L(s) = 1 | + 0.272·3-s − 1.16·5-s − 0.925·9-s − 0.682·11-s − 1.22·13-s − 0.316·15-s − 0.143·17-s + 0.365·19-s − 1.08·23-s + 0.354·25-s − 0.524·27-s − 0.879·29-s − 1.38·31-s − 0.185·33-s + 1.49·37-s − 0.333·39-s − 1.04·41-s − 1.40·43-s + 1.07·45-s + 1.13·47-s − 0.0390·51-s + 1.64·53-s + 0.794·55-s + 0.0995·57-s − 1.97·59-s − 0.990·61-s + 1.42·65-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(784s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.3065543850 |
L(21) |
≈ |
0.3065543850 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1−4.24T+243T2 |
| 5 | 1+65.0T+3.12e3T2 |
| 11 | 1+274T+1.61e5T2 |
| 13 | 1+746.T+3.71e5T2 |
| 17 | 1+171.T+1.41e6T2 |
| 19 | 1−575.T+2.47e6T2 |
| 23 | 1+2.75e3T+6.43e6T2 |
| 29 | 1+3.98e3T+2.05e7T2 |
| 31 | 1+7.42e3T+2.86e7T2 |
| 37 | 1−1.24e4T+6.93e7T2 |
| 41 | 1+1.12e4T+1.15e8T2 |
| 43 | 1+1.70e4T+1.47e8T2 |
| 47 | 1−1.71e4T+2.29e8T2 |
| 53 | 1−3.35e4T+4.18e8T2 |
| 59 | 1+5.27e4T+7.14e8T2 |
| 61 | 1+2.87e4T+8.44e8T2 |
| 67 | 1−1.05e4T+1.35e9T2 |
| 71 | 1−1.05e4T+1.80e9T2 |
| 73 | 1−2.37e4T+2.07e9T2 |
| 79 | 1+1.03e5T+3.07e9T2 |
| 83 | 1+1.82e4T+3.93e9T2 |
| 89 | 1−4.73e4T+5.58e9T2 |
| 97 | 1+4.54e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.470992962471521965258669858449, −8.565486551326832440270991137900, −7.72237893339769620344335054529, −7.34964237013917137550833884216, −5.93132861176516595887146190554, −5.04008038984725728382232927432, −3.98901872633266974571688997546, −3.07401814334093639232249783631, −2.08162691289654556715088404573, −0.23267906574130013221452631315,
0.23267906574130013221452631315, 2.08162691289654556715088404573, 3.07401814334093639232249783631, 3.98901872633266974571688997546, 5.04008038984725728382232927432, 5.93132861176516595887146190554, 7.34964237013917137550833884216, 7.72237893339769620344335054529, 8.565486551326832440270991137900, 9.470992962471521965258669858449