Properties

Label 2-28e2-1.1-c5-0-5
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.24·3-s − 65.0·5-s − 225·9-s − 274·11-s − 746.·13-s − 276·15-s − 171.·17-s + 575.·19-s − 2.75e3·23-s + 1.10e3·25-s − 1.98e3·27-s − 3.98e3·29-s − 7.42e3·31-s − 1.16e3·33-s + 1.24e4·37-s − 3.16e3·39-s − 1.12e4·41-s − 1.70e4·43-s + 1.46e4·45-s + 1.71e4·47-s − 725.·51-s + 3.35e4·53-s + 1.78e4·55-s + 2.44e3·57-s − 5.27e4·59-s − 2.87e4·61-s + 4.85e4·65-s + ⋯
L(s)  = 1  + 0.272·3-s − 1.16·5-s − 0.925·9-s − 0.682·11-s − 1.22·13-s − 0.316·15-s − 0.143·17-s + 0.365·19-s − 1.08·23-s + 0.354·25-s − 0.524·27-s − 0.879·29-s − 1.38·31-s − 0.185·33-s + 1.49·37-s − 0.333·39-s − 1.04·41-s − 1.40·43-s + 1.07·45-s + 1.13·47-s − 0.0390·51-s + 1.64·53-s + 0.794·55-s + 0.0995·57-s − 1.97·59-s − 0.990·61-s + 1.42·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3065543850\)
\(L(\frac12)\) \(\approx\) \(0.3065543850\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 4.24T + 243T^{2} \)
5 \( 1 + 65.0T + 3.12e3T^{2} \)
11 \( 1 + 274T + 1.61e5T^{2} \)
13 \( 1 + 746.T + 3.71e5T^{2} \)
17 \( 1 + 171.T + 1.41e6T^{2} \)
19 \( 1 - 575.T + 2.47e6T^{2} \)
23 \( 1 + 2.75e3T + 6.43e6T^{2} \)
29 \( 1 + 3.98e3T + 2.05e7T^{2} \)
31 \( 1 + 7.42e3T + 2.86e7T^{2} \)
37 \( 1 - 1.24e4T + 6.93e7T^{2} \)
41 \( 1 + 1.12e4T + 1.15e8T^{2} \)
43 \( 1 + 1.70e4T + 1.47e8T^{2} \)
47 \( 1 - 1.71e4T + 2.29e8T^{2} \)
53 \( 1 - 3.35e4T + 4.18e8T^{2} \)
59 \( 1 + 5.27e4T + 7.14e8T^{2} \)
61 \( 1 + 2.87e4T + 8.44e8T^{2} \)
67 \( 1 - 1.05e4T + 1.35e9T^{2} \)
71 \( 1 - 1.05e4T + 1.80e9T^{2} \)
73 \( 1 - 2.37e4T + 2.07e9T^{2} \)
79 \( 1 + 1.03e5T + 3.07e9T^{2} \)
83 \( 1 + 1.82e4T + 3.93e9T^{2} \)
89 \( 1 - 4.73e4T + 5.58e9T^{2} \)
97 \( 1 + 4.54e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.470992962471521965258669858449, −8.565486551326832440270991137900, −7.72237893339769620344335054529, −7.34964237013917137550833884216, −5.93132861176516595887146190554, −5.04008038984725728382232927432, −3.98901872633266974571688997546, −3.07401814334093639232249783631, −2.08162691289654556715088404573, −0.23267906574130013221452631315, 0.23267906574130013221452631315, 2.08162691289654556715088404573, 3.07401814334093639232249783631, 3.98901872633266974571688997546, 5.04008038984725728382232927432, 5.93132861176516595887146190554, 7.34964237013917137550833884216, 7.72237893339769620344335054529, 8.565486551326832440270991137900, 9.470992962471521965258669858449

Graph of the $Z$-function along the critical line