Properties

Label 2-28e2-1.1-c5-0-56
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20·3-s + 74·5-s + 157·9-s − 124·11-s − 478·13-s + 1.48e3·15-s + 1.19e3·17-s + 3.04e3·19-s − 184·23-s + 2.35e3·25-s − 1.72e3·27-s − 3.28e3·29-s − 5.72e3·31-s − 2.48e3·33-s + 1.03e4·37-s − 9.56e3·39-s + 8.88e3·41-s + 9.18e3·43-s + 1.16e4·45-s + 2.36e4·47-s + 2.39e4·51-s + 1.16e4·53-s − 9.17e3·55-s + 6.08e4·57-s + 1.68e4·59-s + 1.84e4·61-s − 3.53e4·65-s + ⋯
L(s)  = 1  + 1.28·3-s + 1.32·5-s + 0.646·9-s − 0.308·11-s − 0.784·13-s + 1.69·15-s + 1.00·17-s + 1.93·19-s − 0.0725·23-s + 0.752·25-s − 0.454·27-s − 0.724·29-s − 1.07·31-s − 0.396·33-s + 1.24·37-s − 1.00·39-s + 0.825·41-s + 0.757·43-s + 0.855·45-s + 1.56·47-s + 1.28·51-s + 0.571·53-s − 0.409·55-s + 2.48·57-s + 0.631·59-s + 0.635·61-s − 1.03·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.091005047\)
\(L(\frac12)\) \(\approx\) \(5.091005047\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 20 T + p^{5} T^{2} \)
5 \( 1 - 74 T + p^{5} T^{2} \)
11 \( 1 + 124 T + p^{5} T^{2} \)
13 \( 1 + 478 T + p^{5} T^{2} \)
17 \( 1 - 1198 T + p^{5} T^{2} \)
19 \( 1 - 3044 T + p^{5} T^{2} \)
23 \( 1 + 8 p T + p^{5} T^{2} \)
29 \( 1 + 3282 T + p^{5} T^{2} \)
31 \( 1 + 5728 T + p^{5} T^{2} \)
37 \( 1 - 10326 T + p^{5} T^{2} \)
41 \( 1 - 8886 T + p^{5} T^{2} \)
43 \( 1 - 9188 T + p^{5} T^{2} \)
47 \( 1 - 23664 T + p^{5} T^{2} \)
53 \( 1 - 11686 T + p^{5} T^{2} \)
59 \( 1 - 16876 T + p^{5} T^{2} \)
61 \( 1 - 18482 T + p^{5} T^{2} \)
67 \( 1 - 15532 T + p^{5} T^{2} \)
71 \( 1 - 31960 T + p^{5} T^{2} \)
73 \( 1 - 4886 T + p^{5} T^{2} \)
79 \( 1 + 44560 T + p^{5} T^{2} \)
83 \( 1 - 67364 T + p^{5} T^{2} \)
89 \( 1 + 71994 T + p^{5} T^{2} \)
97 \( 1 + 48866 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.684293237209611819458237506435, −8.898451979725293816946711617242, −7.71658479618322588105628688743, −7.32126689258511098639847932970, −5.78772713605093594021794091856, −5.31998942044890269830265833872, −3.81029654867682447348185824664, −2.79556429477722180003451147058, −2.16935983469153455750546168408, −1.01074162202961239920134415201, 1.01074162202961239920134415201, 2.16935983469153455750546168408, 2.79556429477722180003451147058, 3.81029654867682447348185824664, 5.31998942044890269830265833872, 5.78772713605093594021794091856, 7.32126689258511098639847932970, 7.71658479618322588105628688743, 8.898451979725293816946711617242, 9.684293237209611819458237506435

Graph of the $Z$-function along the critical line