L(s) = 1 | + 20·3-s + 74·5-s + 157·9-s − 124·11-s − 478·13-s + 1.48e3·15-s + 1.19e3·17-s + 3.04e3·19-s − 184·23-s + 2.35e3·25-s − 1.72e3·27-s − 3.28e3·29-s − 5.72e3·31-s − 2.48e3·33-s + 1.03e4·37-s − 9.56e3·39-s + 8.88e3·41-s + 9.18e3·43-s + 1.16e4·45-s + 2.36e4·47-s + 2.39e4·51-s + 1.16e4·53-s − 9.17e3·55-s + 6.08e4·57-s + 1.68e4·59-s + 1.84e4·61-s − 3.53e4·65-s + ⋯ |
L(s) = 1 | + 1.28·3-s + 1.32·5-s + 0.646·9-s − 0.308·11-s − 0.784·13-s + 1.69·15-s + 1.00·17-s + 1.93·19-s − 0.0725·23-s + 0.752·25-s − 0.454·27-s − 0.724·29-s − 1.07·31-s − 0.396·33-s + 1.24·37-s − 1.00·39-s + 0.825·41-s + 0.757·43-s + 0.855·45-s + 1.56·47-s + 1.28·51-s + 0.571·53-s − 0.409·55-s + 2.48·57-s + 0.631·59-s + 0.635·61-s − 1.03·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(5.091005047\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.091005047\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 20 T + p^{5} T^{2} \) |
| 5 | \( 1 - 74 T + p^{5} T^{2} \) |
| 11 | \( 1 + 124 T + p^{5} T^{2} \) |
| 13 | \( 1 + 478 T + p^{5} T^{2} \) |
| 17 | \( 1 - 1198 T + p^{5} T^{2} \) |
| 19 | \( 1 - 3044 T + p^{5} T^{2} \) |
| 23 | \( 1 + 8 p T + p^{5} T^{2} \) |
| 29 | \( 1 + 3282 T + p^{5} T^{2} \) |
| 31 | \( 1 + 5728 T + p^{5} T^{2} \) |
| 37 | \( 1 - 10326 T + p^{5} T^{2} \) |
| 41 | \( 1 - 8886 T + p^{5} T^{2} \) |
| 43 | \( 1 - 9188 T + p^{5} T^{2} \) |
| 47 | \( 1 - 23664 T + p^{5} T^{2} \) |
| 53 | \( 1 - 11686 T + p^{5} T^{2} \) |
| 59 | \( 1 - 16876 T + p^{5} T^{2} \) |
| 61 | \( 1 - 18482 T + p^{5} T^{2} \) |
| 67 | \( 1 - 15532 T + p^{5} T^{2} \) |
| 71 | \( 1 - 31960 T + p^{5} T^{2} \) |
| 73 | \( 1 - 4886 T + p^{5} T^{2} \) |
| 79 | \( 1 + 44560 T + p^{5} T^{2} \) |
| 83 | \( 1 - 67364 T + p^{5} T^{2} \) |
| 89 | \( 1 + 71994 T + p^{5} T^{2} \) |
| 97 | \( 1 + 48866 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.684293237209611819458237506435, −8.898451979725293816946711617242, −7.71658479618322588105628688743, −7.32126689258511098639847932970, −5.78772713605093594021794091856, −5.31998942044890269830265833872, −3.81029654867682447348185824664, −2.79556429477722180003451147058, −2.16935983469153455750546168408, −1.01074162202961239920134415201,
1.01074162202961239920134415201, 2.16935983469153455750546168408, 2.79556429477722180003451147058, 3.81029654867682447348185824664, 5.31998942044890269830265833872, 5.78772713605093594021794091856, 7.32126689258511098639847932970, 7.71658479618322588105628688743, 8.898451979725293816946711617242, 9.684293237209611819458237506435