L(s) = 1 | + 20·3-s + 74·5-s + 157·9-s − 124·11-s − 478·13-s + 1.48e3·15-s + 1.19e3·17-s + 3.04e3·19-s − 184·23-s + 2.35e3·25-s − 1.72e3·27-s − 3.28e3·29-s − 5.72e3·31-s − 2.48e3·33-s + 1.03e4·37-s − 9.56e3·39-s + 8.88e3·41-s + 9.18e3·43-s + 1.16e4·45-s + 2.36e4·47-s + 2.39e4·51-s + 1.16e4·53-s − 9.17e3·55-s + 6.08e4·57-s + 1.68e4·59-s + 1.84e4·61-s − 3.53e4·65-s + ⋯ |
L(s) = 1 | + 1.28·3-s + 1.32·5-s + 0.646·9-s − 0.308·11-s − 0.784·13-s + 1.69·15-s + 1.00·17-s + 1.93·19-s − 0.0725·23-s + 0.752·25-s − 0.454·27-s − 0.724·29-s − 1.07·31-s − 0.396·33-s + 1.24·37-s − 1.00·39-s + 0.825·41-s + 0.757·43-s + 0.855·45-s + 1.56·47-s + 1.28·51-s + 0.571·53-s − 0.409·55-s + 2.48·57-s + 0.631·59-s + 0.635·61-s − 1.03·65-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(784s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
5.091005047 |
L(21) |
≈ |
5.091005047 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1−20T+p5T2 |
| 5 | 1−74T+p5T2 |
| 11 | 1+124T+p5T2 |
| 13 | 1+478T+p5T2 |
| 17 | 1−1198T+p5T2 |
| 19 | 1−3044T+p5T2 |
| 23 | 1+8pT+p5T2 |
| 29 | 1+3282T+p5T2 |
| 31 | 1+5728T+p5T2 |
| 37 | 1−10326T+p5T2 |
| 41 | 1−8886T+p5T2 |
| 43 | 1−9188T+p5T2 |
| 47 | 1−23664T+p5T2 |
| 53 | 1−11686T+p5T2 |
| 59 | 1−16876T+p5T2 |
| 61 | 1−18482T+p5T2 |
| 67 | 1−15532T+p5T2 |
| 71 | 1−31960T+p5T2 |
| 73 | 1−4886T+p5T2 |
| 79 | 1+44560T+p5T2 |
| 83 | 1−67364T+p5T2 |
| 89 | 1+71994T+p5T2 |
| 97 | 1+48866T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.684293237209611819458237506435, −8.898451979725293816946711617242, −7.71658479618322588105628688743, −7.32126689258511098639847932970, −5.78772713605093594021794091856, −5.31998942044890269830265833872, −3.81029654867682447348185824664, −2.79556429477722180003451147058, −2.16935983469153455750546168408, −1.01074162202961239920134415201,
1.01074162202961239920134415201, 2.16935983469153455750546168408, 2.79556429477722180003451147058, 3.81029654867682447348185824664, 5.31998942044890269830265833872, 5.78772713605093594021794091856, 7.32126689258511098639847932970, 7.71658479618322588105628688743, 8.898451979725293816946711617242, 9.684293237209611819458237506435