L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + 0.999i·8-s + (0.866 + 0.5i)9-s + (−1.36 − 0.366i)11-s + (−0.5 + 0.866i)16-s + (0.499 + 0.866i)18-s + (−0.999 − i)22-s + (1 − 1.73i)23-s + (−0.866 + 0.5i)25-s + (1 − i)29-s + (−0.866 + 0.499i)32-s + 0.999i·36-s + (−1.36 + 0.366i)37-s + (−1 + i)43-s + (−0.366 − 1.36i)44-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + 0.999i·8-s + (0.866 + 0.5i)9-s + (−1.36 − 0.366i)11-s + (−0.5 + 0.866i)16-s + (0.499 + 0.866i)18-s + (−0.999 − i)22-s + (1 − 1.73i)23-s + (−0.866 + 0.5i)25-s + (1 − i)29-s + (−0.866 + 0.499i)32-s + 0.999i·36-s + (−1.36 + 0.366i)37-s + (−1 + i)43-s + (−0.366 − 1.36i)44-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)(0.496−0.868i)Λ(1−s)
Λ(s)=(=(784s/2ΓC(s)L(s)(0.496−0.868i)Λ(1−s)
Degree: |
2 |
Conductor: |
784
= 24⋅72
|
Sign: |
0.496−0.868i
|
Analytic conductor: |
0.391266 |
Root analytic conductor: |
0.625513 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ784(667,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 784, ( :0), 0.496−0.868i)
|
Particular Values
L(21) |
≈ |
1.541334090 |
L(21) |
≈ |
1.541334090 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 7 | 1 |
good | 3 | 1+(−0.866−0.5i)T2 |
| 5 | 1+(0.866−0.5i)T2 |
| 11 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 13 | 1−iT2 |
| 17 | 1+(−0.5+0.866i)T2 |
| 19 | 1+(0.866−0.5i)T2 |
| 23 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−1+i)T−iT2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 41 | 1−T2 |
| 43 | 1+(1−i)T−iT2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(−0.366+1.36i)T+(−0.866−0.5i)T2 |
| 59 | 1+(0.866+0.5i)T2 |
| 61 | 1+(−0.866+0.5i)T2 |
| 67 | 1+(−0.366+1.36i)T+(−0.866−0.5i)T2 |
| 71 | 1+T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(1.73+i)T+(0.5+0.866i)T2 |
| 83 | 1+iT2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66902795580643181635394708897, −10.02910475939848803816805734859, −8.564371068402713343074600174251, −7.962348204137922259291116922026, −7.09698757218468603499530286888, −6.25110118175128429337876503529, −5.11964682627567840236611993304, −4.58336630805791750171568083605, −3.27536228670837657177471745648, −2.21345868600080706104598064328,
1.57334716477303286272011606463, 2.89195887764347738093865720242, 3.88932592050006074511414690820, 4.96408329511130940346901685193, 5.63650562291649736988102925566, 6.90661095712952450031109156460, 7.44555998490019468433815833198, 8.816207712265261560324684130014, 9.936162844383575306814909795876, 10.30681331664546908427426373300