L(s) = 1 | + (1.36 + 0.366i)2-s + (−1.36 + 0.366i)3-s + (1.73 + i)4-s + (−1.36 − 0.366i)5-s − 2·6-s + (1.99 + 2i)8-s + (−0.866 + 0.5i)9-s + (−1.73 − i)10-s + (0.366 + 1.36i)11-s + (−2.73 − 0.732i)12-s + (1 + i)13-s + 2·15-s + (1.99 + 3.46i)16-s + (−1 + 1.73i)17-s + (−1.36 + 0.366i)18-s + (−1.09 + 4.09i)19-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.788 + 0.211i)3-s + (0.866 + 0.5i)4-s + (−0.610 − 0.163i)5-s − 0.816·6-s + (0.707 + 0.707i)8-s + (−0.288 + 0.166i)9-s + (−0.547 − 0.316i)10-s + (0.110 + 0.411i)11-s + (−0.788 − 0.211i)12-s + (0.277 + 0.277i)13-s + 0.516·15-s + (0.499 + 0.866i)16-s + (−0.242 + 0.420i)17-s + (−0.321 + 0.0862i)18-s + (−0.251 + 0.940i)19-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)(−0.615−0.788i)Λ(2−s)
Λ(s)=(=(784s/2ΓC(s+1/2)L(s)(−0.615−0.788i)Λ(1−s)
Degree: |
2 |
Conductor: |
784
= 24⋅72
|
Sign: |
−0.615−0.788i
|
Analytic conductor: |
6.26027 |
Root analytic conductor: |
2.50205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ784(557,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 784, ( :1/2), −0.615−0.788i)
|
Particular Values
L(1) |
≈ |
0.637806+1.30698i |
L(21) |
≈ |
0.637806+1.30698i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36−0.366i)T |
| 7 | 1 |
good | 3 | 1+(1.36−0.366i)T+(2.59−1.5i)T2 |
| 5 | 1+(1.36+0.366i)T+(4.33+2.5i)T2 |
| 11 | 1+(−0.366−1.36i)T+(−9.52+5.5i)T2 |
| 13 | 1+(−1−i)T+13iT2 |
| 17 | 1+(1−1.73i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.09−4.09i)T+(−16.4−9.5i)T2 |
| 23 | 1+(5.19−3i)T+(11.5−19.9i)T2 |
| 29 | 1+(−3−3i)T+29iT2 |
| 31 | 1+(4−6.92i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4.09+1.09i)T+(32.0+18.5i)T2 |
| 41 | 1−41T2 |
| 43 | 1+(−5+5i)T−43iT2 |
| 47 | 1+(−4−6.92i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.83+6.83i)T+(−45.8+26.5i)T2 |
| 59 | 1+(−1.09−4.09i)T+(−51.0+29.5i)T2 |
| 61 | 1+(−3.29+12.2i)T+(−52.8−30.5i)T2 |
| 67 | 1+(−6.83+1.83i)T+(58.0−33.5i)T2 |
| 71 | 1−10iT−71T2 |
| 73 | 1+(−3.46−2i)T+(36.5+63.2i)T2 |
| 79 | 1+(−39.5+68.4i)T2 |
| 83 | 1+(−1−i)T+83iT2 |
| 89 | 1+(−3.46+2i)T+(44.5−77.0i)T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86526175226527659985543761143, −10.09024142914215116793362636902, −8.613235494106915330104761898068, −7.901618339839388105951051010645, −6.89127760919081632955773886059, −6.01416840664914436388468621447, −5.28190650925256759172563825635, −4.30296248885310855361922526969, −3.54977982277054317555619917832, −1.94805754406740269319251515750,
0.56495862658599632052662303324, 2.42153094949907804958072285165, 3.59611010321157134259589652330, 4.51609685287121078803663308180, 5.60939877429752001293440665617, 6.24045477026544824353755734131, 7.09266228288039239077231175608, 8.069476125818346261938169996748, 9.255716778847940030909001990245, 10.44953683997457855633812806059