Properties

Label 2-2900-1.1-c1-0-0
Degree $2$
Conductor $2900$
Sign $1$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.809·3-s − 3.65·7-s − 2.34·9-s + 2.15·11-s − 6.40·13-s − 3.77·17-s − 6.39·19-s + 2.95·21-s + 1.51·23-s + 4.32·27-s + 29-s + 7.48·31-s − 1.74·33-s + 2.15·37-s + 5.17·39-s + 7.22·41-s − 8.95·43-s + 3.84·47-s + 6.32·49-s + 3.05·51-s + 9.89·53-s + 5.16·57-s + 1.36·59-s − 7.82·61-s + 8.56·63-s − 2.29·67-s − 1.22·69-s + ⋯
L(s)  = 1  − 0.467·3-s − 1.37·7-s − 0.781·9-s + 0.650·11-s − 1.77·13-s − 0.915·17-s − 1.46·19-s + 0.644·21-s + 0.316·23-s + 0.832·27-s + 0.185·29-s + 1.34·31-s − 0.303·33-s + 0.354·37-s + 0.829·39-s + 1.12·41-s − 1.36·43-s + 0.561·47-s + 0.903·49-s + 0.427·51-s + 1.35·53-s + 0.684·57-s + 0.177·59-s − 1.00·61-s + 1.07·63-s − 0.279·67-s − 0.147·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5821167791\)
\(L(\frac12)\) \(\approx\) \(0.5821167791\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 + 0.809T + 3T^{2} \)
7 \( 1 + 3.65T + 7T^{2} \)
11 \( 1 - 2.15T + 11T^{2} \)
13 \( 1 + 6.40T + 13T^{2} \)
17 \( 1 + 3.77T + 17T^{2} \)
19 \( 1 + 6.39T + 19T^{2} \)
23 \( 1 - 1.51T + 23T^{2} \)
31 \( 1 - 7.48T + 31T^{2} \)
37 \( 1 - 2.15T + 37T^{2} \)
41 \( 1 - 7.22T + 41T^{2} \)
43 \( 1 + 8.95T + 43T^{2} \)
47 \( 1 - 3.84T + 47T^{2} \)
53 \( 1 - 9.89T + 53T^{2} \)
59 \( 1 - 1.36T + 59T^{2} \)
61 \( 1 + 7.82T + 61T^{2} \)
67 \( 1 + 2.29T + 67T^{2} \)
71 \( 1 + 3.13T + 71T^{2} \)
73 \( 1 - 5.90T + 73T^{2} \)
79 \( 1 + 6.34T + 79T^{2} \)
83 \( 1 - 8.30T + 83T^{2} \)
89 \( 1 - 14.8T + 89T^{2} \)
97 \( 1 + 3.51T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.933948855135111579599943544970, −8.055197122707027038095874608142, −6.91667344986252717492051084779, −6.56000922097771702341097703497, −5.87376845433752830711883984089, −4.84567711514558769671714625746, −4.13789257838491752845059551863, −2.93645435489564729899638655384, −2.32768339640532483035344199395, −0.44534041916284258195324234322, 0.44534041916284258195324234322, 2.32768339640532483035344199395, 2.93645435489564729899638655384, 4.13789257838491752845059551863, 4.84567711514558769671714625746, 5.87376845433752830711883984089, 6.56000922097771702341097703497, 6.91667344986252717492051084779, 8.055197122707027038095874608142, 8.933948855135111579599943544970

Graph of the $Z$-function along the critical line