Properties

Label 2-2900-1.1-c1-0-3
Degree $2$
Conductor $2900$
Sign $1$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.20·3-s + 1.56·7-s + 1.86·9-s − 5.47·11-s − 4.33·13-s + 4.06·17-s − 7.14·19-s − 3.44·21-s − 1.82·23-s + 2.50·27-s + 29-s + 4.61·31-s + 12.0·33-s + 7.54·37-s + 9.55·39-s − 6.52·41-s + 4.02·43-s − 6.44·47-s − 4.55·49-s − 8.97·51-s + 7.35·53-s + 15.7·57-s + 8.82·59-s − 8.19·61-s + 2.91·63-s − 10.0·67-s + 4.03·69-s + ⋯
L(s)  = 1  − 1.27·3-s + 0.590·7-s + 0.621·9-s − 1.64·11-s − 1.20·13-s + 0.986·17-s − 1.63·19-s − 0.752·21-s − 0.381·23-s + 0.482·27-s + 0.185·29-s + 0.828·31-s + 2.09·33-s + 1.24·37-s + 1.53·39-s − 1.01·41-s + 0.613·43-s − 0.940·47-s − 0.651·49-s − 1.25·51-s + 1.00·53-s + 2.08·57-s + 1.14·59-s − 1.04·61-s + 0.366·63-s − 1.22·67-s + 0.485·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6505128524\)
\(L(\frac12)\) \(\approx\) \(0.6505128524\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 + 2.20T + 3T^{2} \)
7 \( 1 - 1.56T + 7T^{2} \)
11 \( 1 + 5.47T + 11T^{2} \)
13 \( 1 + 4.33T + 13T^{2} \)
17 \( 1 - 4.06T + 17T^{2} \)
19 \( 1 + 7.14T + 19T^{2} \)
23 \( 1 + 1.82T + 23T^{2} \)
31 \( 1 - 4.61T + 31T^{2} \)
37 \( 1 - 7.54T + 37T^{2} \)
41 \( 1 + 6.52T + 41T^{2} \)
43 \( 1 - 4.02T + 43T^{2} \)
47 \( 1 + 6.44T + 47T^{2} \)
53 \( 1 - 7.35T + 53T^{2} \)
59 \( 1 - 8.82T + 59T^{2} \)
61 \( 1 + 8.19T + 61T^{2} \)
67 \( 1 + 10.0T + 67T^{2} \)
71 \( 1 + 7.60T + 71T^{2} \)
73 \( 1 - 6.19T + 73T^{2} \)
79 \( 1 - 0.416T + 79T^{2} \)
83 \( 1 + 13.3T + 83T^{2} \)
89 \( 1 - 14.2T + 89T^{2} \)
97 \( 1 - 17.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.558676783291030709701390792299, −7.938368941356261096915352718862, −7.28449664142933631951096051331, −6.28672477038524939886148857823, −5.66880284548583327292823454798, −4.88787731030777140590621541544, −4.51329314534814232166014145420, −2.96045062337754962407177337513, −2.04597440030941806190985582453, −0.50497651562037122282609479887, 0.50497651562037122282609479887, 2.04597440030941806190985582453, 2.96045062337754962407177337513, 4.51329314534814232166014145420, 4.88787731030777140590621541544, 5.66880284548583327292823454798, 6.28672477038524939886148857823, 7.28449664142933631951096051331, 7.938368941356261096915352718862, 8.558676783291030709701390792299

Graph of the $Z$-function along the critical line