Properties

Label 2-2900-1.1-c1-0-33
Degree $2$
Conductor $2900$
Sign $-1$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·3-s + 1.41·7-s − 0.999·9-s + 0.732·11-s + 1.03·13-s + 0.378·17-s − 4.19·19-s − 2.00·21-s − 2.44·23-s + 5.65·27-s − 29-s + 0.196·31-s − 1.03·33-s + 0.378·37-s − 1.46·39-s − 5.46·41-s − 1.41·43-s + 8.38·47-s − 5·49-s − 0.535·51-s + 1.03·53-s + 5.93·57-s − 2·59-s − 2.53·61-s − 1.41·63-s − 1.69·67-s + 3.46·69-s + ⋯
L(s)  = 1  − 0.816·3-s + 0.534·7-s − 0.333·9-s + 0.220·11-s + 0.287·13-s + 0.0919·17-s − 0.962·19-s − 0.436·21-s − 0.510·23-s + 1.08·27-s − 0.185·29-s + 0.0352·31-s − 0.180·33-s + 0.0622·37-s − 0.234·39-s − 0.853·41-s − 0.215·43-s + 1.22·47-s − 0.714·49-s − 0.0750·51-s + 0.142·53-s + 0.786·57-s − 0.260·59-s − 0.324·61-s − 0.178·63-s − 0.206·67-s + 0.417·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( 1 + 1.41T + 3T^{2} \)
7 \( 1 - 1.41T + 7T^{2} \)
11 \( 1 - 0.732T + 11T^{2} \)
13 \( 1 - 1.03T + 13T^{2} \)
17 \( 1 - 0.378T + 17T^{2} \)
19 \( 1 + 4.19T + 19T^{2} \)
23 \( 1 + 2.44T + 23T^{2} \)
31 \( 1 - 0.196T + 31T^{2} \)
37 \( 1 - 0.378T + 37T^{2} \)
41 \( 1 + 5.46T + 41T^{2} \)
43 \( 1 + 1.41T + 43T^{2} \)
47 \( 1 - 8.38T + 47T^{2} \)
53 \( 1 - 1.03T + 53T^{2} \)
59 \( 1 + 2T + 59T^{2} \)
61 \( 1 + 2.53T + 61T^{2} \)
67 \( 1 + 1.69T + 67T^{2} \)
71 \( 1 + 8.92T + 71T^{2} \)
73 \( 1 + 0.656T + 73T^{2} \)
79 \( 1 - 3.66T + 79T^{2} \)
83 \( 1 - 11.9T + 83T^{2} \)
89 \( 1 + 0.535T + 89T^{2} \)
97 \( 1 + 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.420071575848007910972502904069, −7.66833359605819690013889104167, −6.67261145699874479486648339380, −6.09693617243412784458763011094, −5.34627632108360669882887936617, −4.59095931648610406732832410627, −3.71090613105198694982625741843, −2.52272108200300328109293408851, −1.38615278965778890776976065978, 0, 1.38615278965778890776976065978, 2.52272108200300328109293408851, 3.71090613105198694982625741843, 4.59095931648610406732832410627, 5.34627632108360669882887936617, 6.09693617243412784458763011094, 6.67261145699874479486648339380, 7.66833359605819690013889104167, 8.420071575848007910972502904069

Graph of the $Z$-function along the critical line