Properties

Label 2-2900-1.1-c1-0-9
Degree $2$
Conductor $2900$
Sign $1$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.778·3-s + 4.82·7-s − 2.39·9-s − 6.13·11-s − 1.15·13-s − 7.51·17-s + 3.38·19-s − 3.75·21-s + 2.19·23-s + 4.19·27-s + 29-s + 9.17·31-s + 4.77·33-s + 5.95·37-s + 0.901·39-s + 7.70·41-s + 2.84·43-s + 5.15·47-s + 16.3·49-s + 5.84·51-s − 8.39·53-s − 2.63·57-s − 8.52·59-s + 5.02·61-s − 11.5·63-s + 2.29·67-s − 1.70·69-s + ⋯
L(s)  = 1  − 0.449·3-s + 1.82·7-s − 0.798·9-s − 1.85·11-s − 0.321·13-s − 1.82·17-s + 0.777·19-s − 0.819·21-s + 0.456·23-s + 0.807·27-s + 0.185·29-s + 1.64·31-s + 0.831·33-s + 0.979·37-s + 0.144·39-s + 1.20·41-s + 0.433·43-s + 0.752·47-s + 2.32·49-s + 0.818·51-s − 1.15·53-s − 0.349·57-s − 1.10·59-s + 0.642·61-s − 1.45·63-s + 0.279·67-s − 0.205·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.437543704\)
\(L(\frac12)\) \(\approx\) \(1.437543704\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 + 0.778T + 3T^{2} \)
7 \( 1 - 4.82T + 7T^{2} \)
11 \( 1 + 6.13T + 11T^{2} \)
13 \( 1 + 1.15T + 13T^{2} \)
17 \( 1 + 7.51T + 17T^{2} \)
19 \( 1 - 3.38T + 19T^{2} \)
23 \( 1 - 2.19T + 23T^{2} \)
31 \( 1 - 9.17T + 31T^{2} \)
37 \( 1 - 5.95T + 37T^{2} \)
41 \( 1 - 7.70T + 41T^{2} \)
43 \( 1 - 2.84T + 43T^{2} \)
47 \( 1 - 5.15T + 47T^{2} \)
53 \( 1 + 8.39T + 53T^{2} \)
59 \( 1 + 8.52T + 59T^{2} \)
61 \( 1 - 5.02T + 61T^{2} \)
67 \( 1 - 2.29T + 67T^{2} \)
71 \( 1 - 9.81T + 71T^{2} \)
73 \( 1 - 0.495T + 73T^{2} \)
79 \( 1 - 8.19T + 79T^{2} \)
83 \( 1 - 1.10T + 83T^{2} \)
89 \( 1 - 4.82T + 89T^{2} \)
97 \( 1 + 3.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.556445606824709045993612493127, −7.996183210290389901424420942034, −7.50493140846625558792353553340, −6.38790205072187035484477623742, −5.49973589538446873840653743483, −4.88404887571550765592059868818, −4.46642465144997750235770361642, −2.76315067074540165724800979194, −2.25014932178571456027920362163, −0.73854598447220851296415488318, 0.73854598447220851296415488318, 2.25014932178571456027920362163, 2.76315067074540165724800979194, 4.46642465144997750235770361642, 4.88404887571550765592059868818, 5.49973589538446873840653743483, 6.38790205072187035484477623742, 7.50493140846625558792353553340, 7.996183210290389901424420942034, 8.556445606824709045993612493127

Graph of the $Z$-function along the critical line