L(s) = 1 | + (0.433 − 0.900i)2-s + (1.40 + 1.12i)3-s + (−0.623 − 0.781i)4-s + (1.62 − 0.781i)6-s + (0.974 + 0.777i)7-s + (−0.974 + 0.222i)8-s + (0.500 + 2.19i)9-s − 1.80i·12-s + (1.12 − 0.541i)14-s + (−0.222 + 0.974i)16-s + (2.19 + 0.499i)18-s + (0.500 + 2.19i)21-s + (−0.781 − 1.62i)23-s + (−1.62 − 0.781i)24-s + (−0.974 + 2.02i)27-s − 1.24i·28-s + ⋯ |
L(s) = 1 | + (0.433 − 0.900i)2-s + (1.40 + 1.12i)3-s + (−0.623 − 0.781i)4-s + (1.62 − 0.781i)6-s + (0.974 + 0.777i)7-s + (−0.974 + 0.222i)8-s + (0.500 + 2.19i)9-s − 1.80i·12-s + (1.12 − 0.541i)14-s + (−0.222 + 0.974i)16-s + (2.19 + 0.499i)18-s + (0.500 + 2.19i)21-s + (−0.781 − 1.62i)23-s + (−1.62 − 0.781i)24-s + (−0.974 + 2.02i)27-s − 1.24i·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.449532039\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.449532039\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.433 + 0.900i)T \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (0.623 - 0.781i)T \) |
good | 3 | \( 1 + (-1.40 - 1.12i)T + (0.222 + 0.974i)T^{2} \) |
| 7 | \( 1 + (-0.974 - 0.777i)T + (0.222 + 0.974i)T^{2} \) |
| 11 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 23 | \( 1 + (0.781 + 1.62i)T + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 37 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + 0.445T + T^{2} \) |
| 43 | \( 1 + (0.193 + 0.400i)T + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (1.21 + 0.277i)T + (0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-1.24 + 1.56i)T + (-0.222 - 0.974i)T^{2} \) |
| 67 | \( 1 + (-1.94 + 0.445i)T + (0.900 - 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 79 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 83 | \( 1 + (0.347 - 0.277i)T + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-1.12 - 0.541i)T + (0.623 + 0.781i)T^{2} \) |
| 97 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.039217259152639321719998027302, −8.384125982917710726472815648722, −8.067318821266517844122067913306, −6.59120889475376402088728693786, −5.30166671953470389347857371701, −4.90590416586240065840426741640, −4.05471292553665756340076532317, −3.36501074795867452381383593591, −2.39892930211577739969874939942, −1.88295828266240226039512735279,
1.31707285129093296990747119073, 2.35405919125741307006087781437, 3.50957065576376206138311254589, 4.02445569858331545933826104098, 5.11827972562006560299310557487, 6.11493779604669005524509808102, 6.95163167218750951059073610215, 7.56950690332454644139890849871, 7.945187800214825318876263027239, 8.510704472516818529235998726660