L(s) = 1 | + (−0.623 − 0.781i)2-s + (−0.222 + 0.974i)4-s + (0.900 − 0.433i)8-s + (−0.900 + 0.433i)9-s + (−0.400 − 0.193i)13-s + (−0.900 − 0.433i)16-s − 1.24·17-s + (0.900 + 0.433i)18-s + (0.0990 + 0.433i)26-s + (−0.900 − 0.433i)29-s + (0.222 + 0.974i)32-s + (0.777 + 0.974i)34-s + (−0.222 − 0.974i)36-s + (−0.400 + 0.193i)37-s − 0.445·41-s + ⋯ |
L(s) = 1 | + (−0.623 − 0.781i)2-s + (−0.222 + 0.974i)4-s + (0.900 − 0.433i)8-s + (−0.900 + 0.433i)9-s + (−0.400 − 0.193i)13-s + (−0.900 − 0.433i)16-s − 1.24·17-s + (0.900 + 0.433i)18-s + (0.0990 + 0.433i)26-s + (−0.900 − 0.433i)29-s + (0.222 + 0.974i)32-s + (0.777 + 0.974i)34-s + (−0.222 − 0.974i)36-s + (−0.400 + 0.193i)37-s − 0.445·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.833 - 0.552i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.833 - 0.552i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02348676015\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02348676015\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.623 + 0.781i)T \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (0.900 + 0.433i)T \) |
good | 3 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 7 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 11 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 13 | \( 1 + (0.400 + 0.193i)T + (0.623 + 0.781i)T^{2} \) |
| 17 | \( 1 + 1.24T + T^{2} \) |
| 19 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 23 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 37 | \( 1 + (0.400 - 0.193i)T + (0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 + 0.445T + T^{2} \) |
| 43 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 53 | \( 1 + (0.777 + 0.974i)T + (-0.222 + 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.277 + 1.21i)T + (-0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 71 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (0.777 - 0.974i)T + (-0.222 - 0.974i)T^{2} \) |
| 79 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (1.12 + 1.40i)T + (-0.222 + 0.974i)T^{2} \) |
| 97 | \( 1 + (0.0990 - 0.433i)T + (-0.900 - 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.544610366557019973190812239636, −8.023423285739517806243763089947, −7.19182114163573067410761260317, −6.34306467965210426880863380082, −5.24551742256432338421566859792, −4.47458420918288846892971084519, −3.45405242804643885651139194984, −2.59571792646187032551193750262, −1.78369969996830180303311029391, −0.01696295817122953092172168749,
1.67474582853928150343523413674, 2.79878377654525726548737233491, 4.06380059061222361153968355358, 4.97288237262447056113967230853, 5.73418989224480668312063377797, 6.48259809398434799020635578621, 7.10559987432271735834708850438, 7.927894629879193368430040630452, 8.740279417581628100451943843534, 9.128743463343243409361845446751