Properties

Label 2-2900-116.115-c0-0-7
Degree $2$
Conductor $2900$
Sign $1$
Analytic cond. $1.44728$
Root an. cond. $1.20303$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 3·9-s + 2·12-s + 16-s − 3·18-s − 2·24-s + 4·27-s − 29-s − 32-s + 3·36-s − 2·43-s − 2·47-s + 2·48-s + 49-s − 4·54-s + 58-s + 64-s − 3·72-s + 5·81-s + 2·86-s − 2·87-s + 2·94-s − 2·96-s + ⋯
L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 3·9-s + 2·12-s + 16-s − 3·18-s − 2·24-s + 4·27-s − 29-s − 32-s + 3·36-s − 2·43-s − 2·47-s + 2·48-s + 49-s − 4·54-s + 58-s + 64-s − 3·72-s + 5·81-s + 2·86-s − 2·87-s + 2·94-s − 2·96-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.44728\)
Root analytic conductor: \(1.20303\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2900} (2551, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.688603262\)
\(L(\frac12)\) \(\approx\) \(1.688603262\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( ( 1 - T )^{2} \)
7 \( ( 1 - T )( 1 + T ) \)
11 \( 1 + T^{2} \)
13 \( 1 + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
31 \( 1 + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 + T )^{2} \)
47 \( ( 1 + T )^{2} \)
53 \( 1 + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( 1 + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.739263448443951963768192946869, −8.428944285996751718909818997348, −7.65204245929723613468130482820, −7.13273108166356499472271347594, −6.33403057552372579969061849871, −4.93550520979361483113148670468, −3.74622317954035227069607203779, −3.14582559267984043906849720568, −2.21581852805476656076166455263, −1.48085941576244790466121624626, 1.48085941576244790466121624626, 2.21581852805476656076166455263, 3.14582559267984043906849720568, 3.74622317954035227069607203779, 4.93550520979361483113148670468, 6.33403057552372579969061849871, 7.13273108166356499472271347594, 7.65204245929723613468130482820, 8.428944285996751718909818997348, 8.739263448443951963768192946869

Graph of the $Z$-function along the critical line