L(s) = 1 | + (−0.900 − 0.433i)2-s + (1.12 − 1.40i)3-s + (0.623 + 0.781i)4-s + (−1.62 + 0.781i)6-s + (−1.22 − 0.974i)7-s + (−0.222 − 0.974i)8-s + (−0.500 − 2.19i)9-s + 1.80·12-s + (0.678 + 1.40i)14-s + (−0.222 + 0.974i)16-s + (−0.499 + 2.19i)18-s + (−2.74 + 0.626i)21-s + (−0.376 − 0.781i)23-s + (−1.62 − 0.781i)24-s + (−2.02 − 0.974i)27-s − 1.56i·28-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)2-s + (1.12 − 1.40i)3-s + (0.623 + 0.781i)4-s + (−1.62 + 0.781i)6-s + (−1.22 − 0.974i)7-s + (−0.222 − 0.974i)8-s + (−0.500 − 2.19i)9-s + 1.80·12-s + (0.678 + 1.40i)14-s + (−0.222 + 0.974i)16-s + (−0.499 + 2.19i)18-s + (−2.74 + 0.626i)21-s + (−0.376 − 0.781i)23-s + (−1.62 − 0.781i)24-s + (−2.02 − 0.974i)27-s − 1.56i·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8203505328\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8203505328\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.900 + 0.433i)T \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (0.623 - 0.781i)T \) |
good | 3 | \( 1 + (-1.12 + 1.40i)T + (-0.222 - 0.974i)T^{2} \) |
| 7 | \( 1 + (1.22 + 0.974i)T + (0.222 + 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 23 | \( 1 + (0.376 + 0.781i)T + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 37 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 41 | \( 1 + 1.94iT - T^{2} \) |
| 43 | \( 1 + (-0.400 + 0.193i)T + (0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (0.277 - 1.21i)T + (-0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 67 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 79 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 83 | \( 1 + (1.52 - 1.21i)T + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.678 + 1.40i)T + (-0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 + (0.222 - 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.635530668861825149347379061063, −7.71631659474979089270191232492, −7.24647733556127697093508103719, −6.72538296674570081435097385402, −6.01620724902509680094688820606, −4.04758385566452550283155090221, −3.35832313044318672217616394573, −2.63862046865577423021281237932, −1.68614632818631866048798622616, −0.56588709249792669385675785002,
2.07103239531292337907656771852, 2.87971760283391037280769453319, 3.59116530505233607060810097080, 4.72497757958544543489325474999, 5.63525232757549284063821070004, 6.26814710128815253714114809852, 7.37345616482938446674036269615, 8.171761259561142487315068049673, 8.751681659963585228071702819453, 9.413443092505895858005462040617