L(s) = 1 | − 2.96·3-s + (−0.336 − 0.336i)7-s + 5.81·9-s + (1.26 + 1.26i)11-s + (−4.51 − 4.51i)13-s + 6.03i·17-s + (−2.26 + 2.26i)19-s + (1 + i)21-s + (6.37 − 6.37i)23-s − 8.36·27-s + (−4.04 − 3.55i)29-s + (6.33 + 6.33i)31-s + (−3.74 − 3.74i)33-s − 8.26·37-s + (13.4 + 13.4i)39-s + ⋯ |
L(s) = 1 | − 1.71·3-s + (−0.127 − 0.127i)7-s + 1.93·9-s + (0.380 + 0.380i)11-s + (−1.25 − 1.25i)13-s + 1.46i·17-s + (−0.518 + 0.518i)19-s + (0.218 + 0.218i)21-s + (1.33 − 1.33i)23-s − 1.60·27-s + (−0.751 − 0.660i)29-s + (1.13 + 1.13i)31-s + (−0.652 − 0.652i)33-s − 1.35·37-s + (2.14 + 2.14i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.883 - 0.467i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.883 - 0.467i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6667537115\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6667537115\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (4.04 + 3.55i)T \) |
good | 3 | \( 1 + 2.96T + 3T^{2} \) |
| 7 | \( 1 + (0.336 + 0.336i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.26 - 1.26i)T + 11iT^{2} \) |
| 13 | \( 1 + (4.51 + 4.51i)T + 13iT^{2} \) |
| 17 | \( 1 - 6.03iT - 17T^{2} \) |
| 19 | \( 1 + (2.26 - 2.26i)T - 19iT^{2} \) |
| 23 | \( 1 + (-6.37 + 6.37i)T - 23iT^{2} \) |
| 31 | \( 1 + (-6.33 - 6.33i)T + 31iT^{2} \) |
| 37 | \( 1 + 8.26T + 37T^{2} \) |
| 41 | \( 1 + (0.216 - 0.216i)T - 41iT^{2} \) |
| 43 | \( 1 + 3.84T + 43T^{2} \) |
| 47 | \( 1 + 1.42T + 47T^{2} \) |
| 53 | \( 1 + (-1.45 + 1.45i)T - 53iT^{2} \) |
| 59 | \( 1 - 8.38iT - 59T^{2} \) |
| 61 | \( 1 + (9.11 + 9.11i)T + 61iT^{2} \) |
| 67 | \( 1 + (3.31 - 3.31i)T - 67iT^{2} \) |
| 71 | \( 1 + 2.81iT - 71T^{2} \) |
| 73 | \( 1 - 9.10iT - 73T^{2} \) |
| 79 | \( 1 + (-5.84 + 5.84i)T - 79iT^{2} \) |
| 83 | \( 1 + (-8.79 + 8.79i)T - 83iT^{2} \) |
| 89 | \( 1 + (5.30 - 5.30i)T - 89iT^{2} \) |
| 97 | \( 1 - 0.750T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.796827272430778210295770517601, −7.953455375967136514757883294472, −7.01211860996163841535012254756, −6.51649083867857375956455559285, −5.76141237551070470419519401919, −4.99644531925774751152407562881, −4.45898128094621489660772103301, −3.30450079341590002406031560338, −1.88967045192332575580742944777, −0.65225618879834045069438482255,
0.45921265906117607496877577872, 1.72072097018483113492010666339, 3.04145012680180652221687951199, 4.36675918440186927008109376500, 4.94037039345464239777209192811, 5.52875636776754094090030022637, 6.51685299579207903961158012522, 6.97846237364409440275445076809, 7.56203769609638574445467383099, 9.087840992151067466421568492522