L(s) = 1 | + 3.32i·3-s − 1.32i·7-s − 8.02·9-s + 5.32·11-s − 5.02i·13-s + 6.34i·17-s + 4.34·19-s + 4.38·21-s − 1.70i·23-s − 16.6i·27-s + 29-s + 8.34·31-s + 17.6i·33-s + 6.93i·37-s + 16.6·39-s + ⋯ |
L(s) = 1 | + 1.91i·3-s − 0.499i·7-s − 2.67·9-s + 1.60·11-s − 1.39i·13-s + 1.53i·17-s + 0.997·19-s + 0.957·21-s − 0.356i·23-s − 3.21i·27-s + 0.185·29-s + 1.49·31-s + 3.07i·33-s + 1.14i·37-s + 2.67·39-s + ⋯ |
Λ(s)=(=(2900s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(2900s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2900
= 22⋅52⋅29
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
23.1566 |
Root analytic conductor: |
4.81213 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2900(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2900, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.907991127 |
L(21) |
≈ |
1.907991127 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 29 | 1−T |
good | 3 | 1−3.32iT−3T2 |
| 7 | 1+1.32iT−7T2 |
| 11 | 1−5.32T+11T2 |
| 13 | 1+5.02iT−13T2 |
| 17 | 1−6.34iT−17T2 |
| 19 | 1−4.34T+19T2 |
| 23 | 1+1.70iT−23T2 |
| 31 | 1−8.34T+31T2 |
| 37 | 1−6.93iT−37T2 |
| 41 | 1+1.02T+41T2 |
| 43 | 1−10.7iT−43T2 |
| 47 | 1−0.679iT−47T2 |
| 53 | 1−2.38iT−53T2 |
| 59 | 1+10.4T+59T2 |
| 61 | 1+6.38T+61T2 |
| 67 | 1−5.70iT−67T2 |
| 71 | 1+3.61T+71T2 |
| 73 | 1+6.73iT−73T2 |
| 79 | 1−11.3T+79T2 |
| 83 | 1+3.96iT−83T2 |
| 89 | 1+2.58T+89T2 |
| 97 | 1−15.3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.168808684696348936758518713465, −8.419290309315023821305993803093, −7.81726887498035459006856975824, −6.35892965880746102328801111308, −5.95006218842075434436456532676, −4.85959900155327462509477696747, −4.31737817361596095833677590014, −3.51865179567782703564229555589, −2.97110453432116412779188712728, −1.08786333741248214862620771551,
0.74714789826024250908497805750, 1.66284136756615919445624543681, 2.46695073368184012527957424173, 3.47286901084952499372442918640, 4.75525054152828781931420743352, 5.78609873738579538250312131314, 6.42316289941697772913270207705, 7.10566472384534556754457525087, 7.42039572754321893419614562833, 8.560198263888960675763607158861