Properties

Label 2-2900-5.4-c1-0-16
Degree $2$
Conductor $2900$
Sign $-0.447 - 0.894i$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.32i·3-s − 1.32i·7-s − 8.02·9-s + 5.32·11-s − 5.02i·13-s + 6.34i·17-s + 4.34·19-s + 4.38·21-s − 1.70i·23-s − 16.6i·27-s + 29-s + 8.34·31-s + 17.6i·33-s + 6.93i·37-s + 16.6·39-s + ⋯
L(s)  = 1  + 1.91i·3-s − 0.499i·7-s − 2.67·9-s + 1.60·11-s − 1.39i·13-s + 1.53i·17-s + 0.997·19-s + 0.957·21-s − 0.356i·23-s − 3.21i·27-s + 0.185·29-s + 1.49·31-s + 3.07i·33-s + 1.14i·37-s + 2.67·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2900} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.907991127\)
\(L(\frac12)\) \(\approx\) \(1.907991127\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 - 3.32iT - 3T^{2} \)
7 \( 1 + 1.32iT - 7T^{2} \)
11 \( 1 - 5.32T + 11T^{2} \)
13 \( 1 + 5.02iT - 13T^{2} \)
17 \( 1 - 6.34iT - 17T^{2} \)
19 \( 1 - 4.34T + 19T^{2} \)
23 \( 1 + 1.70iT - 23T^{2} \)
31 \( 1 - 8.34T + 31T^{2} \)
37 \( 1 - 6.93iT - 37T^{2} \)
41 \( 1 + 1.02T + 41T^{2} \)
43 \( 1 - 10.7iT - 43T^{2} \)
47 \( 1 - 0.679iT - 47T^{2} \)
53 \( 1 - 2.38iT - 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 + 6.38T + 61T^{2} \)
67 \( 1 - 5.70iT - 67T^{2} \)
71 \( 1 + 3.61T + 71T^{2} \)
73 \( 1 + 6.73iT - 73T^{2} \)
79 \( 1 - 11.3T + 79T^{2} \)
83 \( 1 + 3.96iT - 83T^{2} \)
89 \( 1 + 2.58T + 89T^{2} \)
97 \( 1 - 15.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.168808684696348936758518713465, −8.419290309315023821305993803093, −7.81726887498035459006856975824, −6.35892965880746102328801111308, −5.95006218842075434436456532676, −4.85959900155327462509477696747, −4.31737817361596095833677590014, −3.51865179567782703564229555589, −2.97110453432116412779188712728, −1.08786333741248214862620771551, 0.74714789826024250908497805750, 1.66284136756615919445624543681, 2.46695073368184012527957424173, 3.47286901084952499372442918640, 4.75525054152828781931420743352, 5.78609873738579538250312131314, 6.42316289941697772913270207705, 7.10566472384534556754457525087, 7.42039572754321893419614562833, 8.560198263888960675763607158861

Graph of the $Z$-function along the critical line