L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s + 13-s + 0.999·15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 + 0.866i)31-s + (0.866 + 0.499i)33-s + (0.866 + 0.5i)35-s + (−0.866 − 0.5i)37-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s + 13-s + 0.999·15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 + 0.866i)31-s + (0.866 + 0.499i)33-s + (0.866 + 0.5i)35-s + (−0.866 − 0.5i)37-s + ⋯ |
Λ(s)=(=(2912s/2ΓC(s)L(s)(0.197−0.980i)Λ(1−s)
Λ(s)=(=(2912s/2ΓC(s)L(s)(0.197−0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
2912
= 25⋅7⋅13
|
Sign: |
0.197−0.980i
|
Analytic conductor: |
1.45327 |
Root analytic conductor: |
1.20551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2912(415,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2912, ( :0), 0.197−0.980i)
|
Particular Values
L(21) |
≈ |
0.4589619486 |
L(21) |
≈ |
0.4589619486 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 13 | 1−T |
good | 3 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 5 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 41 | 1−2iT−T2 |
| 43 | 1−2iT−T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 79 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.074194690380133340639334076787, −8.224885753134341190203907937793, −7.894617960890736863506208435254, −6.46728663337270782006890983262, −6.14412316573716145055105993094, −5.24779949924084907972796422112, −4.45806466071811924043723833379, −3.63824258602976444574553503370, −2.85269796237646499722716536620, −0.953532756705708350182267443491,
0.41973649853521409597449471018, 1.99767277119106943672989819978, 3.47333933463075316706528962319, 3.67707373399344166668005155508, 5.13897002112771356812991167224, 5.81803174434588399968681936424, 6.54729330112640457409641588069, 7.26258637062818815694778718031, 7.69581834463195570291595552568, 8.742181666296059642912779016340