L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s + 13-s + 0.999·15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 + 0.866i)31-s + (0.866 + 0.499i)33-s + (0.866 + 0.5i)35-s + (−0.866 − 0.5i)37-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.866 − 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s + 13-s + 0.999·15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)21-s + (−0.866 − 0.5i)23-s − i·27-s + (0.5 + 0.866i)31-s + (0.866 + 0.499i)33-s + (0.866 + 0.5i)35-s + (−0.866 − 0.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4589619486\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4589619486\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - 2iT - T^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.074194690380133340639334076787, −8.224885753134341190203907937793, −7.894617960890736863506208435254, −6.46728663337270782006890983262, −6.14412316573716145055105993094, −5.24779949924084907972796422112, −4.45806466071811924043723833379, −3.63824258602976444574553503370, −2.85269796237646499722716536620, −0.953532756705708350182267443491,
0.41973649853521409597449471018, 1.99767277119106943672989819978, 3.47333933463075316706528962319, 3.67707373399344166668005155508, 5.13897002112771356812991167224, 5.81803174434588399968681936424, 6.54729330112640457409641588069, 7.26258637062818815694778718031, 7.69581834463195570291595552568, 8.742181666296059642912779016340