L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.866 − 0.5i)5-s + i·7-s + (0.5 − 0.866i)11-s + i·13-s + (−0.866 + 0.499i)15-s + (−0.5 − 0.866i)19-s + (0.866 + 0.5i)21-s − 2i·23-s + 27-s + (0.866 − 0.5i)29-s + (0.866 − 0.5i)31-s + (−0.499 − 0.866i)33-s + (0.5 − 0.866i)35-s + (0.866 + 0.5i)39-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.866 − 0.5i)5-s + i·7-s + (0.5 − 0.866i)11-s + i·13-s + (−0.866 + 0.499i)15-s + (−0.5 − 0.866i)19-s + (0.866 + 0.5i)21-s − 2i·23-s + 27-s + (0.866 − 0.5i)29-s + (0.866 − 0.5i)31-s + (−0.499 − 0.866i)33-s + (0.5 − 0.866i)35-s + (0.866 + 0.5i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.325 + 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.325 + 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.286331313\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.286331313\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - iT \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + 2iT - T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.563710464218024460482049801764, −8.330504287396196183263762050154, −7.35671020097078313392102765696, −6.54399873664481130677910999428, −6.01255922708122516831342151166, −4.62416306669467965755958430644, −4.26507641774063281630102816012, −2.81509808379246081577271584049, −2.26162059233679385888283944106, −0.878020261799088288070335889632,
1.32146734246307972710866374836, 2.95507095246583913182854027884, 3.67846858697648895926639916634, 4.10407250123421276693561503817, 4.95221943254240720503036446232, 6.10427414464888157679500699422, 7.12238722221907455433834140589, 7.53808115022345223072637811516, 8.272368455364995129854571460781, 9.215925241002901953448161133114