L(s) = 1 | + (−0.258 − 0.448i)3-s + 1.93i·5-s + (−0.866 − 0.5i)7-s + (0.366 − 0.633i)9-s + (0.965 − 0.258i)13-s + (0.866 − 0.499i)15-s + (1.22 + 0.707i)19-s + 0.517i·21-s + (0.5 + 0.866i)23-s − 2.73·25-s − 0.896·27-s + (0.965 − 1.67i)35-s + (−0.366 − 0.366i)39-s + (1.22 + 0.707i)45-s + (0.499 + 0.866i)49-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.448i)3-s + 1.93i·5-s + (−0.866 − 0.5i)7-s + (0.366 − 0.633i)9-s + (0.965 − 0.258i)13-s + (0.866 − 0.499i)15-s + (1.22 + 0.707i)19-s + 0.517i·21-s + (0.5 + 0.866i)23-s − 2.73·25-s − 0.896·27-s + (0.965 − 1.67i)35-s + (−0.366 − 0.366i)39-s + (1.22 + 0.707i)45-s + (0.499 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 - 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 - 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.085731691\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.085731691\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-0.965 + 0.258i)T \) |
good | 3 | \( 1 + (0.258 + 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - 1.93iT - T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-1.67 - 0.965i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - 1.41iT - T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.266601753816635361661018040567, −7.968257281949375083180385429361, −7.22951485719637951351957665761, −6.88316502313737933446269538795, −6.15333541277380750725350771878, −5.61103797937130246779345845281, −3.76655706470903250256124474777, −3.56947435867775701384421663499, −2.65498687989088194525879992723, −1.22643789177756366920485086909,
0.836656680435481799937838588787, 2.03108779678310087792979877616, 3.40853296499517909309958296635, 4.32583180302728783659650995304, 5.02040185714729634925816989592, 5.53499221861098202688016602914, 6.40267702883270662637690241042, 7.45190627752973967111896527286, 8.384822384901132038000683894438, 8.873774473634279365060724496203