L(s) = 1 | + 3-s + (−0.866 + 0.5i)4-s + 9-s + (−0.366 − 1.36i)11-s + (−0.866 + 0.5i)12-s + (−0.5 − 0.866i)13-s + (0.499 − 0.866i)16-s − i·17-s + (−1 − i)19-s + (0.866 − 0.5i)23-s + 27-s + (−0.5 + 0.866i)29-s + (−0.366 − 1.36i)33-s + (−0.866 + 0.5i)36-s + (−1 + i)37-s + ⋯ |
L(s) = 1 | + 3-s + (−0.866 + 0.5i)4-s + 9-s + (−0.366 − 1.36i)11-s + (−0.866 + 0.5i)12-s + (−0.5 − 0.866i)13-s + (0.499 − 0.866i)16-s − i·17-s + (−1 − i)19-s + (0.866 − 0.5i)23-s + 27-s + (−0.5 + 0.866i)29-s + (−0.366 − 1.36i)33-s + (−0.866 + 0.5i)36-s + (−1 + i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.546 + 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.546 + 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.271626984\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.271626984\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 + (1 + i)T + iT^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (-1 - i)T + iT^{2} \) |
| 73 | \( 1 + (1 - i)T - iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + (-1 + i)T - iT^{2} \) |
| 97 | \( 1 + (0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.841714348734353970202867351114, −8.286419470130512496858703884170, −7.45282172940248249295525526553, −6.87013143787936607924727688898, −5.49803573587183053957924240870, −4.88167167763197845216176277419, −3.95327848759552337478914709906, −3.05717454782097832741878857691, −2.61013757057317736748414114791, −0.73351949131372037209045733424,
1.64429444752654772016077534542, 2.25206995650358659103824705149, 3.74831276649772153692691883344, 4.23589868728338122535858010713, 4.98051358161067870243722916716, 5.99381634657962714561473141342, 6.97657737850701528040052336477, 7.65225504028089010782803718034, 8.445709664837495375092871141910, 9.058844965667239495950518728411