L(s) = 1 | − 3-s + (0.866 − 0.5i)4-s + 9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)12-s + (0.5 + 0.866i)13-s + (0.499 − 0.866i)16-s − i·17-s + (−1 + i)19-s + (0.866 − 0.5i)23-s − 27-s + (−0.5 + 0.866i)29-s + (−1.36 + 0.366i)33-s + (0.866 − 0.5i)36-s + (1 + i)37-s + ⋯ |
L(s) = 1 | − 3-s + (0.866 − 0.5i)4-s + 9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)12-s + (0.5 + 0.866i)13-s + (0.499 − 0.866i)16-s − i·17-s + (−1 + i)19-s + (0.866 − 0.5i)23-s − 27-s + (−0.5 + 0.866i)29-s + (−1.36 + 0.366i)33-s + (0.866 − 0.5i)36-s + (1 + i)37-s + ⋯ |
Λ(s)=(=(2925s/2ΓC(s)L(s)(0.919+0.393i)Λ(1−s)
Λ(s)=(=(2925s/2ΓC(s)L(s)(0.919+0.393i)Λ(1−s)
Degree: |
2 |
Conductor: |
2925
= 32⋅52⋅13
|
Sign: |
0.919+0.393i
|
Analytic conductor: |
1.45976 |
Root analytic conductor: |
1.20820 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2925(2176,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2925, ( :0), 0.919+0.393i)
|
Particular Values
L(21) |
≈ |
1.250965346 |
L(21) |
≈ |
1.250965346 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 13 | 1+(−0.5−0.866i)T |
good | 2 | 1+(−0.866+0.5i)T2 |
| 7 | 1+(0.866−0.5i)T2 |
| 11 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 17 | 1+iT−T2 |
| 19 | 1+(1−i)T−iT2 |
| 23 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 31 | 1+(0.866+0.5i)T2 |
| 37 | 1+(−1−i)T+iT2 |
| 41 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 53 | 1+T+T2 |
| 59 | 1+(−0.866−0.5i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(0.866+0.5i)T2 |
| 71 | 1+(−1+i)T−iT2 |
| 73 | 1+(−1−i)T+iT2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 89 | 1+(−1−i)T+iT2 |
| 97 | 1+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.124409765291113233380648230946, −8.031784457276360488624593519187, −6.90511310109354573344025656714, −6.64466356839560913280319171622, −6.04125062300452721235416149510, −5.14988178273420134382604218256, −4.30076231456971782866763306704, −3.33878965528293960305401460200, −1.91019180928855719358095150549, −1.12622466143218779620103461745,
1.21463547169001404971004794987, 2.24060520681680874517357841782, 3.58328680220920211981000917737, 4.16985925833762368292470743684, 5.25638626374358938827516945752, 6.27178089563315163664028425376, 6.48223551884187920856939801801, 7.33515845797171779467760492579, 8.086654665716087683620495688198, 8.987257285186787705309664075447