L(s) = 1 | − 3-s + (0.866 − 0.5i)4-s + 9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)12-s + (0.5 + 0.866i)13-s + (0.499 − 0.866i)16-s − i·17-s + (−1 + i)19-s + (0.866 − 0.5i)23-s − 27-s + (−0.5 + 0.866i)29-s + (−1.36 + 0.366i)33-s + (0.866 − 0.5i)36-s + (1 + i)37-s + ⋯ |
L(s) = 1 | − 3-s + (0.866 − 0.5i)4-s + 9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)12-s + (0.5 + 0.866i)13-s + (0.499 − 0.866i)16-s − i·17-s + (−1 + i)19-s + (0.866 − 0.5i)23-s − 27-s + (−0.5 + 0.866i)29-s + (−1.36 + 0.366i)33-s + (0.866 − 0.5i)36-s + (1 + i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 + 0.393i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 + 0.393i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.250965346\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.250965346\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 + (1 - i)T - iT^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (-1 + i)T - iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + (-1 - i)T + iT^{2} \) |
| 97 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.124409765291113233380648230946, −8.031784457276360488624593519187, −6.90511310109354573344025656714, −6.64466356839560913280319171622, −6.04125062300452721235416149510, −5.14988178273420134382604218256, −4.30076231456971782866763306704, −3.33878965528293960305401460200, −1.91019180928855719358095150549, −1.12622466143218779620103461745,
1.21463547169001404971004794987, 2.24060520681680874517357841782, 3.58328680220920211981000917737, 4.16985925833762368292470743684, 5.25638626374358938827516945752, 6.27178089563315163664028425376, 6.48223551884187920856939801801, 7.33515845797171779467760492579, 8.086654665716087683620495688198, 8.987257285186787705309664075447