L(s) = 1 | + (−0.866 − 0.5i)4-s + (1.86 − 0.5i)7-s + i·13-s + (0.499 + 0.866i)16-s + (0.5 + 1.86i)19-s + (−1.86 − 0.5i)28-s + (1 − i)31-s + (−0.366 + 1.36i)37-s + (−1.5 − 0.866i)43-s + (2.36 − 1.36i)49-s + (0.5 − 0.866i)52-s − 0.999i·64-s + (−0.5 − 0.133i)67-s + (0.366 + 0.366i)73-s + (0.5 − 1.86i)76-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)4-s + (1.86 − 0.5i)7-s + i·13-s + (0.499 + 0.866i)16-s + (0.5 + 1.86i)19-s + (−1.86 − 0.5i)28-s + (1 − i)31-s + (−0.366 + 1.36i)37-s + (−1.5 − 0.866i)43-s + (2.36 − 1.36i)49-s + (0.5 − 0.866i)52-s − 0.999i·64-s + (−0.5 − 0.133i)67-s + (0.366 + 0.366i)73-s + (0.5 − 1.86i)76-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0257i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0257i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.272571823\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.272571823\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 2 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (-1.86 + 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-1 + i)T - iT^{2} \) |
| 37 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 73 | \( 1 + (-0.366 - 0.366i)T + iT^{2} \) |
| 79 | \( 1 - 1.73T + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.765443373415691193425915792053, −8.206217291841894624798259366382, −7.71418951808260056908489106388, −6.63507775389988643173489870248, −5.68750188146010335673843604056, −4.95589503814361361798896094332, −4.37180586036494635575322137992, −3.65321467985841537987425947237, −1.90333293777446260691899334665, −1.27637142743234413983658272952,
1.03343557920450659650291845988, 2.40605767381469977929799935540, 3.31231879945388330140598544339, 4.51349303883524134525798998960, 4.99995556664193919990990356420, 5.49833799782012589323576326957, 6.84355724749867222270906245856, 7.75904897425937665375648397373, 8.165791093815207825279187778509, 8.839434533857573412509744696494