L(s) = 1 | − i·4-s + (1 − i)7-s − i·13-s − 16-s + (−1 − i)19-s + (−1 − i)28-s + (1 + i)31-s + (−1 + i)37-s − i·49-s − 52-s + i·64-s + (1 + i)67-s + (1 − i)73-s + (−1 + i)76-s + (−1 − i)91-s + ⋯ |
L(s) = 1 | − i·4-s + (1 − i)7-s − i·13-s − 16-s + (−1 − i)19-s + (−1 − i)28-s + (1 + i)31-s + (−1 + i)37-s − i·49-s − 52-s + i·64-s + (1 + i)67-s + (1 − i)73-s + (−1 + i)76-s + (−1 − i)91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.256228095\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.256228095\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 2 | \( 1 + iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - iT^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (1 + i)T + iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-1 - i)T + iT^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (-1 - i)T + iT^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 + (-1 + i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + (1 + i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.578463707715024107279476466777, −8.096598058912461166318883789972, −7.05267160860198830843268447143, −6.56959945734339281681644154544, −5.49558565105280841295918485178, −4.85374351795357824825049766707, −4.24394926466181307307903669687, −2.96332388599962322690076830622, −1.78382365759962944775249701589, −0.797753375799117961488007663994,
1.87717345643110840097775915967, 2.45039883942702676141526581431, 3.72720249732470050320271435260, 4.37794120111384212584934433152, 5.24270426378048592321858880200, 6.18498535589391991572459290462, 6.94351350092379117722643286356, 7.924785992434291661239084190691, 8.321117685088286588720852072272, 8.961648947526123855276460415419