L(s) = 1 | + (−1.35 − 0.690i)2-s + (0.771 + 1.06i)4-s + (−0.852 + 0.522i)5-s + (−0.0744 − 0.469i)8-s + (1.51 − 0.119i)10-s + (0.444 − 0.144i)11-s + (0.453 + 0.891i)13-s + (0.182 − 0.560i)16-s + (−1.21 − 0.502i)20-s + (−0.701 − 0.111i)22-s + (0.453 − 0.891i)25-s − 1.52i·26-s + (−0.970 + 0.970i)32-s + (0.309 + 0.361i)40-s + (0.149 + 0.0484i)41-s + ⋯ |
L(s) = 1 | + (−1.35 − 0.690i)2-s + (0.771 + 1.06i)4-s + (−0.852 + 0.522i)5-s + (−0.0744 − 0.469i)8-s + (1.51 − 0.119i)10-s + (0.444 − 0.144i)11-s + (0.453 + 0.891i)13-s + (0.182 − 0.560i)16-s + (−1.21 − 0.502i)20-s + (−0.701 − 0.111i)22-s + (0.453 − 0.891i)25-s − 1.52i·26-s + (−0.970 + 0.970i)32-s + (0.309 + 0.361i)40-s + (0.149 + 0.0484i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4469215246\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4469215246\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.852 - 0.522i)T \) |
| 13 | \( 1 + (-0.453 - 0.891i)T \) |
good | 2 | \( 1 + (1.35 + 0.690i)T + (0.587 + 0.809i)T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-0.444 + 0.144i)T + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 41 | \( 1 + (-0.149 - 0.0484i)T + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (1.26 - 1.26i)T - iT^{2} \) |
| 47 | \( 1 + (0.0245 - 0.154i)T + (-0.951 - 0.309i)T^{2} \) |
| 53 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 59 | \( 1 + (-0.322 + 0.993i)T + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.610 + 1.87i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (-1.14 - 1.57i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 79 | \( 1 + (-0.831 - 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.203 - 1.28i)T + (-0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + (-0.236 - 0.727i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.187553504502785926257588863656, −8.187918567545146730007029995328, −7.978540102731698881637938111624, −6.89088287744258814762223876819, −6.42649104418262198136215721842, −5.04013606795028237397488084220, −3.99983065674662986559349803640, −3.22275040640553790477122482326, −2.22359312818859351678424847828, −1.11955946342698372800299830814,
0.53840258341398013271290105801, 1.66563061140816398822754966690, 3.28978423991908029792628541957, 4.11060999846414391662956931688, 5.18354648033049438547807037757, 6.04572102139535298205438514884, 6.92762393759458823266510166362, 7.52331582664534674432901752045, 8.193749036467962386746694177750, 8.738233500994293955473746561183