L(s) = 1 | + (1.15 + 0.589i)2-s + (0.403 + 0.555i)4-s + (0.522 + 0.852i)5-s + (−0.0635 − 0.401i)8-s + (0.101 + 1.29i)10-s + (1.84 − 0.600i)11-s + (−0.453 − 0.891i)13-s + (0.375 − 1.15i)16-s + (−0.262 + 0.634i)20-s + (2.49 + 0.395i)22-s + (−0.453 + 0.891i)25-s − 1.29i·26-s + (0.828 − 0.828i)32-s + (0.309 − 0.263i)40-s + (−1.89 − 0.616i)41-s + ⋯ |
L(s) = 1 | + (1.15 + 0.589i)2-s + (0.403 + 0.555i)4-s + (0.522 + 0.852i)5-s + (−0.0635 − 0.401i)8-s + (0.101 + 1.29i)10-s + (1.84 − 0.600i)11-s + (−0.453 − 0.891i)13-s + (0.375 − 1.15i)16-s + (−0.262 + 0.634i)20-s + (2.49 + 0.395i)22-s + (−0.453 + 0.891i)25-s − 1.29i·26-s + (0.828 − 0.828i)32-s + (0.309 − 0.263i)40-s + (−1.89 − 0.616i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.583263534\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.583263534\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.522 - 0.852i)T \) |
| 13 | \( 1 + (0.453 + 0.891i)T \) |
good | 2 | \( 1 + (-1.15 - 0.589i)T + (0.587 + 0.809i)T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-1.84 + 0.600i)T + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 41 | \( 1 + (1.89 + 0.616i)T + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (1.26 - 1.26i)T - iT^{2} \) |
| 47 | \( 1 + (0.311 - 1.96i)T + (-0.951 - 0.309i)T^{2} \) |
| 53 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 59 | \( 1 + (-0.526 + 1.62i)T + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.610 - 1.87i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (0.274 + 0.377i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 79 | \( 1 + (0.831 + 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.237 - 1.50i)T + (-0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + (0.570 + 1.75i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.098182239670011356037168553301, −8.048584203055549687599746520894, −7.11892952944682888696857070999, −6.53229070861150711853121305070, −6.05027179676163757768534652139, −5.29523698715655562667147237237, −4.37537665674077374514812875138, −3.48053711388649309027015177947, −2.94003971559015740796570341867, −1.41577573869076551519956011846,
1.58656536598044653139471267701, 2.10013834810098631547088825056, 3.53322899638590916075977739954, 4.11736103215624001838602214325, 4.86920685906737540052790706545, 5.44304895297902550486361414298, 6.52861440546739183141734275462, 6.95249099690014633484912668897, 8.450384667421070928648835679198, 8.789892543413495077282977553189