L(s) = 1 | + (0.266 + 1.68i)2-s + (−1.81 + 0.589i)4-s + (0.996 − 0.0784i)5-s + (−0.702 − 1.37i)8-s + (0.398 + 1.65i)10-s + (−0.893 + 1.23i)11-s + (0.987 + 0.156i)13-s + (0.592 − 0.430i)16-s + (−1.76 + 0.730i)20-s + (−2.31 − 1.17i)22-s + (0.987 − 0.156i)25-s + 1.70i·26-s + (−0.211 − 0.211i)32-s + (−0.809 − 1.32i)40-s + (1.14 + 1.57i)41-s + ⋯ |
L(s) = 1 | + (0.266 + 1.68i)2-s + (−1.81 + 0.589i)4-s + (0.996 − 0.0784i)5-s + (−0.702 − 1.37i)8-s + (0.398 + 1.65i)10-s + (−0.893 + 1.23i)11-s + (0.987 + 0.156i)13-s + (0.592 − 0.430i)16-s + (−1.76 + 0.730i)20-s + (−2.31 − 1.17i)22-s + (0.987 − 0.156i)25-s + 1.70i·26-s + (−0.211 − 0.211i)32-s + (−0.809 − 1.32i)40-s + (1.14 + 1.57i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.465536245\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.465536245\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.996 + 0.0784i)T \) |
| 13 | \( 1 + (-0.987 - 0.156i)T \) |
good | 2 | \( 1 + (-0.266 - 1.68i)T + (-0.951 + 0.309i)T^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (0.893 - 1.23i)T + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (-1.14 - 1.57i)T + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + (-0.221 - 0.221i)T + iT^{2} \) |
| 47 | \( 1 + (0.882 - 1.73i)T + (-0.587 - 0.809i)T^{2} \) |
| 53 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (0.126 - 0.0922i)T + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (1.44 + 1.04i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 71 | \( 1 + (-1.23 + 0.401i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (1.34 - 0.437i)T + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.474 + 0.931i)T + (-0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + (0.619 + 0.449i)T + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.222348531168015146566764080928, −8.239015703416699143117242786982, −7.75513041174011534240816217315, −6.87606441913337906396959413409, −6.27516587357763812093711453373, −5.66903244527627687117119070178, −4.86168610048569617597683118180, −4.32569602538809484974656711690, −2.92869080234897174969045725155, −1.68122460916283001558188029378,
0.883679325545636970733562282563, 1.95576192413778319616697490106, 2.82346123145537966015535968000, 3.45703684298056589196552978663, 4.42639783921567141696683508341, 5.53466427428011698772245546257, 5.80352030273076974318829638046, 6.99256541701485517613111776053, 8.257602958594341074620619873422, 8.833923322500338164342519913546