Properties

Label 2-294-1.1-c3-0-5
Degree $2$
Conductor $294$
Sign $1$
Analytic cond. $17.3465$
Root an. cond. $4.16492$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s − 2·5-s − 6·6-s + 8·8-s + 9·9-s − 4·10-s − 8·11-s − 12·12-s + 42·13-s + 6·15-s + 16·16-s + 2·17-s + 18·18-s + 124·19-s − 8·20-s − 16·22-s + 76·23-s − 24·24-s − 121·25-s + 84·26-s − 27·27-s + 254·29-s + 12·30-s + 72·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.178·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.126·10-s − 0.219·11-s − 0.288·12-s + 0.896·13-s + 0.103·15-s + 1/4·16-s + 0.0285·17-s + 0.235·18-s + 1.49·19-s − 0.0894·20-s − 0.155·22-s + 0.689·23-s − 0.204·24-s − 0.967·25-s + 0.633·26-s − 0.192·27-s + 1.62·29-s + 0.0730·30-s + 0.417·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(294\)    =    \(2 \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(17.3465\)
Root analytic conductor: \(4.16492\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 294,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.444877403\)
\(L(\frac12)\) \(\approx\) \(2.444877403\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 + p T \)
7 \( 1 \)
good5 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 + 8 T + p^{3} T^{2} \)
13 \( 1 - 42 T + p^{3} T^{2} \)
17 \( 1 - 2 T + p^{3} T^{2} \)
19 \( 1 - 124 T + p^{3} T^{2} \)
23 \( 1 - 76 T + p^{3} T^{2} \)
29 \( 1 - 254 T + p^{3} T^{2} \)
31 \( 1 - 72 T + p^{3} T^{2} \)
37 \( 1 - 398 T + p^{3} T^{2} \)
41 \( 1 + 462 T + p^{3} T^{2} \)
43 \( 1 - 212 T + p^{3} T^{2} \)
47 \( 1 - 264 T + p^{3} T^{2} \)
53 \( 1 + 162 T + p^{3} T^{2} \)
59 \( 1 - 772 T + p^{3} T^{2} \)
61 \( 1 + 30 T + p^{3} T^{2} \)
67 \( 1 + 764 T + p^{3} T^{2} \)
71 \( 1 + 236 T + p^{3} T^{2} \)
73 \( 1 + 418 T + p^{3} T^{2} \)
79 \( 1 - 552 T + p^{3} T^{2} \)
83 \( 1 + 1036 T + p^{3} T^{2} \)
89 \( 1 + 30 T + p^{3} T^{2} \)
97 \( 1 - 1190 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.56886698311922542653532608853, −10.63851879848623807711697193557, −9.673140973884217385418283947736, −8.299091446871014868611931534960, −7.24487164749901783641199687735, −6.20217852812527652318977227994, −5.30256143482064034171982614073, −4.20281487194666214110630342027, −2.94703327487831006010805444320, −1.09334361875456715075271536774, 1.09334361875456715075271536774, 2.94703327487831006010805444320, 4.20281487194666214110630342027, 5.30256143482064034171982614073, 6.20217852812527652318977227994, 7.24487164749901783641199687735, 8.299091446871014868611931534960, 9.673140973884217385418283947736, 10.63851879848623807711697193557, 11.56886698311922542653532608853

Graph of the $Z$-function along the critical line