L(s) = 1 | − 4·2-s − 9·3-s + 16·4-s − 4.50·5-s + 36·6-s − 64·8-s + 81·9-s + 18.0·10-s − 116.·11-s − 144·12-s + 85.4·13-s + 40.5·15-s + 256·16-s − 33.2·17-s − 324·18-s − 635.·19-s − 72.0·20-s + 464.·22-s + 2.72e3·23-s + 576·24-s − 3.10e3·25-s − 341.·26-s − 729·27-s + 5.86e3·29-s − 162.·30-s − 279.·31-s − 1.02e3·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.0805·5-s + 0.408·6-s − 0.353·8-s + 0.333·9-s + 0.0569·10-s − 0.289·11-s − 0.288·12-s + 0.140·13-s + 0.0465·15-s + 0.250·16-s − 0.0279·17-s − 0.235·18-s − 0.403·19-s − 0.0402·20-s + 0.204·22-s + 1.07·23-s + 0.204·24-s − 0.993·25-s − 0.0991·26-s − 0.192·27-s + 1.29·29-s − 0.0328·30-s − 0.0521·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4T |
| 3 | 1+9T |
| 7 | 1 |
good | 5 | 1+4.50T+3.12e3T2 |
| 11 | 1+116.T+1.61e5T2 |
| 13 | 1−85.4T+3.71e5T2 |
| 17 | 1+33.2T+1.41e6T2 |
| 19 | 1+635.T+2.47e6T2 |
| 23 | 1−2.72e3T+6.43e6T2 |
| 29 | 1−5.86e3T+2.05e7T2 |
| 31 | 1+279.T+2.86e7T2 |
| 37 | 1−3.03e3T+6.93e7T2 |
| 41 | 1+819.T+1.15e8T2 |
| 43 | 1−1.11e4T+1.47e8T2 |
| 47 | 1−7.40e3T+2.29e8T2 |
| 53 | 1+1.36e4T+4.18e8T2 |
| 59 | 1+2.23e4T+7.14e8T2 |
| 61 | 1−1.26e4T+8.44e8T2 |
| 67 | 1+5.23e4T+1.35e9T2 |
| 71 | 1−6.02e4T+1.80e9T2 |
| 73 | 1+7.69e4T+2.07e9T2 |
| 79 | 1+3.35e4T+3.07e9T2 |
| 83 | 1+6.05e4T+3.93e9T2 |
| 89 | 1+9.21e4T+5.58e9T2 |
| 97 | 1+1.52e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51162765321645364134504111242, −9.586180665313000957081469432667, −8.573375545485203626352289805638, −7.58062582538427186700087087464, −6.60382439829072339785833393169, −5.60757472547168797879158001429, −4.33154866655228985853842867330, −2.76493769847232943658954962019, −1.27541090696420692534347657320, 0,
1.27541090696420692534347657320, 2.76493769847232943658954962019, 4.33154866655228985853842867330, 5.60757472547168797879158001429, 6.60382439829072339785833393169, 7.58062582538427186700087087464, 8.573375545485203626352289805638, 9.586180665313000957081469432667, 10.51162765321645364134504111242