L(s) = 1 | + 4·2-s − 9·3-s + 16·4-s + 6·5-s − 36·6-s + 64·8-s + 81·9-s + 24·10-s − 666·11-s − 144·12-s + 559·13-s − 54·15-s + 256·16-s + 1.74e3·17-s + 324·18-s − 1.15e3·19-s + 96·20-s − 2.66e3·22-s − 3.46e3·23-s − 576·24-s − 3.08e3·25-s + 2.23e3·26-s − 729·27-s + 3.37e3·29-s − 216·30-s − 6.29e3·31-s + 1.02e3·32-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.107·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.0758·10-s − 1.65·11-s − 0.288·12-s + 0.917·13-s − 0.0619·15-s + 1/4·16-s + 1.46·17-s + 0.235·18-s − 0.735·19-s + 0.0536·20-s − 1.17·22-s − 1.36·23-s − 0.204·24-s − 0.988·25-s + 0.648·26-s − 0.192·27-s + 0.744·29-s − 0.0438·30-s − 1.17·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 3 | 1+p2T |
| 7 | 1 |
good | 5 | 1−6T+p5T2 |
| 11 | 1+666T+p5T2 |
| 13 | 1−43pT+p5T2 |
| 17 | 1−1740T+p5T2 |
| 19 | 1+1157T+p5T2 |
| 23 | 1+3468T+p5T2 |
| 29 | 1−3372T+p5T2 |
| 31 | 1+203pT+p5T2 |
| 37 | 1−3131T+p5T2 |
| 41 | 1−4866T+p5T2 |
| 43 | 1+11407T+p5T2 |
| 47 | 1+2310T+p5T2 |
| 53 | 1+28296T+p5T2 |
| 59 | 1+20544T+p5T2 |
| 61 | 1−4630T+p5T2 |
| 67 | 1+18745T+p5T2 |
| 71 | 1+38226T+p5T2 |
| 73 | 1+70589T+p5T2 |
| 79 | 1+62293T+p5T2 |
| 83 | 1+79818T+p5T2 |
| 89 | 1−18120T+p5T2 |
| 97 | 1+124754T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54993920027823863704108978803, −9.931304251034525736123619334239, −8.254027796626366659307480027620, −7.50177768939488291446826229838, −6.06663401348382362301575337234, −5.57443980472509031880262589118, −4.37498243713819438479013534453, −3.13832296735515526073587324644, −1.70962022664517275485913801710, 0,
1.70962022664517275485913801710, 3.13832296735515526073587324644, 4.37498243713819438479013534453, 5.57443980472509031880262589118, 6.06663401348382362301575337234, 7.50177768939488291446826229838, 8.254027796626366659307480027620, 9.931304251034525736123619334239, 10.54993920027823863704108978803