Properties

Label 2-294-1.1-c5-0-27
Degree $2$
Conductor $294$
Sign $-1$
Analytic cond. $47.1528$
Root an. cond. $6.86679$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 9·3-s + 16·4-s + 6·5-s − 36·6-s + 64·8-s + 81·9-s + 24·10-s − 666·11-s − 144·12-s + 559·13-s − 54·15-s + 256·16-s + 1.74e3·17-s + 324·18-s − 1.15e3·19-s + 96·20-s − 2.66e3·22-s − 3.46e3·23-s − 576·24-s − 3.08e3·25-s + 2.23e3·26-s − 729·27-s + 3.37e3·29-s − 216·30-s − 6.29e3·31-s + 1.02e3·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.107·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.0758·10-s − 1.65·11-s − 0.288·12-s + 0.917·13-s − 0.0619·15-s + 1/4·16-s + 1.46·17-s + 0.235·18-s − 0.735·19-s + 0.0536·20-s − 1.17·22-s − 1.36·23-s − 0.204·24-s − 0.988·25-s + 0.648·26-s − 0.192·27-s + 0.744·29-s − 0.0438·30-s − 1.17·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(294\)    =    \(2 \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(47.1528\)
Root analytic conductor: \(6.86679\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 294,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 + p^{2} T \)
7 \( 1 \)
good5 \( 1 - 6 T + p^{5} T^{2} \)
11 \( 1 + 666 T + p^{5} T^{2} \)
13 \( 1 - 43 p T + p^{5} T^{2} \)
17 \( 1 - 1740 T + p^{5} T^{2} \)
19 \( 1 + 1157 T + p^{5} T^{2} \)
23 \( 1 + 3468 T + p^{5} T^{2} \)
29 \( 1 - 3372 T + p^{5} T^{2} \)
31 \( 1 + 203 p T + p^{5} T^{2} \)
37 \( 1 - 3131 T + p^{5} T^{2} \)
41 \( 1 - 4866 T + p^{5} T^{2} \)
43 \( 1 + 11407 T + p^{5} T^{2} \)
47 \( 1 + 2310 T + p^{5} T^{2} \)
53 \( 1 + 28296 T + p^{5} T^{2} \)
59 \( 1 + 20544 T + p^{5} T^{2} \)
61 \( 1 - 4630 T + p^{5} T^{2} \)
67 \( 1 + 18745 T + p^{5} T^{2} \)
71 \( 1 + 38226 T + p^{5} T^{2} \)
73 \( 1 + 70589 T + p^{5} T^{2} \)
79 \( 1 + 62293 T + p^{5} T^{2} \)
83 \( 1 + 79818 T + p^{5} T^{2} \)
89 \( 1 - 18120 T + p^{5} T^{2} \)
97 \( 1 + 124754 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54993920027823863704108978803, −9.931304251034525736123619334239, −8.254027796626366659307480027620, −7.50177768939488291446826229838, −6.06663401348382362301575337234, −5.57443980472509031880262589118, −4.37498243713819438479013534453, −3.13832296735515526073587324644, −1.70962022664517275485913801710, 0, 1.70962022664517275485913801710, 3.13832296735515526073587324644, 4.37498243713819438479013534453, 5.57443980472509031880262589118, 6.06663401348382362301575337234, 7.50177768939488291446826229838, 8.254027796626366659307480027620, 9.931304251034525736123619334239, 10.54993920027823863704108978803

Graph of the $Z$-function along the critical line