L(s) = 1 | + 4·2-s + 9·3-s + 16·4-s − 61.0·5-s + 36·6-s + 64·8-s + 81·9-s − 244.·10-s − 36.5·11-s + 144·12-s + 34.5·13-s − 549.·15-s + 256·16-s − 2.06e3·17-s + 324·18-s + 452.·19-s − 977.·20-s − 146.·22-s + 1.68e3·23-s + 576·24-s + 604.·25-s + 138.·26-s + 729·27-s − 4.76e3·29-s − 2.19e3·30-s − 5.26e3·31-s + 1.02e3·32-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s − 1.09·5-s + 0.408·6-s + 0.353·8-s + 0.333·9-s − 0.772·10-s − 0.0910·11-s + 0.288·12-s + 0.0567·13-s − 0.630·15-s + 0.250·16-s − 1.72·17-s + 0.235·18-s + 0.287·19-s − 0.546·20-s − 0.0643·22-s + 0.663·23-s + 0.204·24-s + 0.193·25-s + 0.0401·26-s + 0.192·27-s − 1.05·29-s − 0.446·30-s − 0.983·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4T |
| 3 | 1−9T |
| 7 | 1 |
good | 5 | 1+61.0T+3.12e3T2 |
| 11 | 1+36.5T+1.61e5T2 |
| 13 | 1−34.5T+3.71e5T2 |
| 17 | 1+2.06e3T+1.41e6T2 |
| 19 | 1−452.T+2.47e6T2 |
| 23 | 1−1.68e3T+6.43e6T2 |
| 29 | 1+4.76e3T+2.05e7T2 |
| 31 | 1+5.26e3T+2.86e7T2 |
| 37 | 1+1.28e4T+6.93e7T2 |
| 41 | 1+7.12e3T+1.15e8T2 |
| 43 | 1−1.11e4T+1.47e8T2 |
| 47 | 1+2.34e4T+2.29e8T2 |
| 53 | 1+7.03e3T+4.18e8T2 |
| 59 | 1+4.42e4T+7.14e8T2 |
| 61 | 1−1.93e4T+8.44e8T2 |
| 67 | 1−2.09e4T+1.35e9T2 |
| 71 | 1−7.98e4T+1.80e9T2 |
| 73 | 1+3.70e4T+2.07e9T2 |
| 79 | 1−4.20e4T+3.07e9T2 |
| 83 | 1+6.31e3T+3.93e9T2 |
| 89 | 1+5.14e4T+5.58e9T2 |
| 97 | 1+1.27e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84020485050575768882622092704, −9.379939722301625998558016667219, −8.433418661647511944915712787030, −7.45647517156981617631874505979, −6.66529723581969905345452290922, −5.14032567574772662200908184455, −4.10284479977844316988881523722, −3.26979572967773874518544459932, −1.90902669746424570415111784594, 0,
1.90902669746424570415111784594, 3.26979572967773874518544459932, 4.10284479977844316988881523722, 5.14032567574772662200908184455, 6.66529723581969905345452290922, 7.45647517156981617631874505979, 8.433418661647511944915712787030, 9.379939722301625998558016667219, 10.84020485050575768882622092704