Properties

Label 2-294-1.1-c7-0-19
Degree $2$
Conductor $294$
Sign $1$
Analytic cond. $91.8411$
Root an. cond. $9.58338$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 27·3-s + 64·4-s + 18·5-s − 216·6-s − 512·8-s + 729·9-s − 144·10-s + 8.17e3·11-s + 1.72e3·12-s + 1.42e4·13-s + 486·15-s + 4.09e3·16-s + 2.14e4·17-s − 5.83e3·18-s + 5.88e3·19-s + 1.15e3·20-s − 6.53e4·22-s − 9.87e4·23-s − 1.38e4·24-s − 7.78e4·25-s − 1.13e5·26-s + 1.96e4·27-s + 1.65e5·29-s − 3.88e3·30-s + 2.41e5·31-s − 3.27e4·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.0643·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.0455·10-s + 1.85·11-s + 0.288·12-s + 1.79·13-s + 0.0371·15-s + 1/4·16-s + 1.05·17-s − 0.235·18-s + 0.196·19-s + 0.0321·20-s − 1.30·22-s − 1.69·23-s − 0.204·24-s − 0.995·25-s − 1.27·26-s + 0.192·27-s + 1.25·29-s − 0.0262·30-s + 1.45·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(294\)    =    \(2 \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(91.8411\)
Root analytic conductor: \(9.58338\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 294,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.720668260\)
\(L(\frac12)\) \(\approx\) \(2.720668260\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{3} T \)
3 \( 1 - p^{3} T \)
7 \( 1 \)
good5 \( 1 - 18 T + p^{7} T^{2} \)
11 \( 1 - 8172 T + p^{7} T^{2} \)
13 \( 1 - 14242 T + p^{7} T^{2} \)
17 \( 1 - 21462 T + p^{7} T^{2} \)
19 \( 1 - 5884 T + p^{7} T^{2} \)
23 \( 1 + 98784 T + p^{7} T^{2} \)
29 \( 1 - 165174 T + p^{7} T^{2} \)
31 \( 1 - 241312 T + p^{7} T^{2} \)
37 \( 1 - 185438 T + p^{7} T^{2} \)
41 \( 1 + 59682 T + p^{7} T^{2} \)
43 \( 1 + 809308 T + p^{7} T^{2} \)
47 \( 1 + 942096 T + p^{7} T^{2} \)
53 \( 1 - 226398 T + p^{7} T^{2} \)
59 \( 1 - 2205732 T + p^{7} T^{2} \)
61 \( 1 - 1156690 T + p^{7} T^{2} \)
67 \( 1 + 3740404 T + p^{7} T^{2} \)
71 \( 1 + 2593296 T + p^{7} T^{2} \)
73 \( 1 - 1038742 T + p^{7} T^{2} \)
79 \( 1 - 2280032 T + p^{7} T^{2} \)
83 \( 1 - 283404 T + p^{7} T^{2} \)
89 \( 1 - 5227230 T + p^{7} T^{2} \)
97 \( 1 + 6168770 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20469563771074407083015823322, −9.625662773121024660849698049800, −8.524603203471837991108608791334, −8.078800172039724744198107843986, −6.63109656882668245115689214363, −6.02924582768812313915111455846, −4.11571939084227571707929134968, −3.30751852104742682794155727624, −1.70166152361807475035783182085, −0.976390682087626548943334349174, 0.976390682087626548943334349174, 1.70166152361807475035783182085, 3.30751852104742682794155727624, 4.11571939084227571707929134968, 6.02924582768812313915111455846, 6.63109656882668245115689214363, 8.078800172039724744198107843986, 8.524603203471837991108608791334, 9.625662773121024660849698049800, 10.20469563771074407083015823322

Graph of the $Z$-function along the critical line