L(s) = 1 | − 16·2-s + 81·3-s + 256·4-s + 76·5-s − 1.29e3·6-s − 4.09e3·8-s + 6.56e3·9-s − 1.21e3·10-s + 3.83e4·11-s + 2.07e4·12-s − 9.82e4·13-s + 6.15e3·15-s + 6.55e4·16-s − 1.04e5·17-s − 1.04e5·18-s + 4.20e5·19-s + 1.94e4·20-s − 6.14e5·22-s − 1.39e5·23-s − 3.31e5·24-s − 1.94e6·25-s + 1.57e6·26-s + 5.31e5·27-s − 1.91e6·29-s − 9.84e4·30-s + 6.37e6·31-s − 1.04e6·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.0543·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.0384·10-s + 0.790·11-s + 0.288·12-s − 0.954·13-s + 0.0313·15-s + 1/4·16-s − 0.303·17-s − 0.235·18-s + 0.740·19-s + 0.0271·20-s − 0.558·22-s − 0.103·23-s − 0.204·24-s − 0.997·25-s + 0.674·26-s + 0.192·27-s − 0.503·29-s − 0.0222·30-s + 1.24·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)−Λ(10−s)
Λ(s)=(=(294s/2ΓC(s+9/2)L(s)−Λ(1−s)
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p4T |
| 3 | 1−p4T |
| 7 | 1 |
good | 5 | 1−76T+p9T2 |
| 11 | 1−38386T+p9T2 |
| 13 | 1+98298T+p9T2 |
| 17 | 1+104524T+p9T2 |
| 19 | 1−420580T+p9T2 |
| 23 | 1+139118T+p9T2 |
| 29 | 1+1916290T+p9T2 |
| 31 | 1−6379488T+p9T2 |
| 37 | 1+6629278T+p9T2 |
| 41 | 1−6692112T+p9T2 |
| 43 | 1+23269732T+p9T2 |
| 47 | 1−22000596T+p9T2 |
| 53 | 1−18919770T+p9T2 |
| 59 | 1+179035544T+p9T2 |
| 61 | 1−19797786T+p9T2 |
| 67 | 1+263015240T+p9T2 |
| 71 | 1−22447678T+p9T2 |
| 73 | 1+11023774T+p9T2 |
| 79 | 1+284917908T+p9T2 |
| 83 | 1−226865924T+p9T2 |
| 89 | 1−191377296T+p9T2 |
| 97 | 1−1162236578T+p9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.605083953352980686852875469022, −8.914307098434668118560959751556, −7.85994526955503223168915842830, −7.11604565596641529339698579706, −6.03210364474251277098783725357, −4.63910782466909243693851030773, −3.40538091158149579778656389712, −2.29867280478219999489315965007, −1.29704622966914576993545882125, 0,
1.29704622966914576993545882125, 2.29867280478219999489315965007, 3.40538091158149579778656389712, 4.63910782466909243693851030773, 6.03210364474251277098783725357, 7.11604565596641529339698579706, 7.85994526955503223168915842830, 8.914307098434668118560959751556, 9.605083953352980686852875469022