L(s) = 1 | + (−0.930 − 0.365i)2-s + (−0.0758 − 1.73i)3-s + (0.733 + 0.680i)4-s + (−2.77 − 1.89i)5-s + (−0.561 + 1.63i)6-s + (−2.14 + 1.54i)7-s + (−0.433 − 0.900i)8-s + (−2.98 + 0.262i)9-s + (1.89 + 2.77i)10-s + (0.905 + 6.00i)11-s + (1.12 − 1.32i)12-s + (1.32 − 1.05i)13-s + (2.56 − 0.654i)14-s + (−3.06 + 4.94i)15-s + (0.0747 + 0.997i)16-s + (−0.409 − 0.126i)17-s + ⋯ |
L(s) = 1 | + (−0.658 − 0.258i)2-s + (−0.0438 − 0.999i)3-s + (0.366 + 0.340i)4-s + (−1.24 − 0.845i)5-s + (−0.229 + 0.668i)6-s + (−0.811 + 0.584i)7-s + (−0.153 − 0.318i)8-s + (−0.996 + 0.0875i)9-s + (0.597 + 0.876i)10-s + (0.272 + 1.81i)11-s + (0.323 − 0.381i)12-s + (0.368 − 0.293i)13-s + (0.685 − 0.174i)14-s + (−0.790 + 1.27i)15-s + (0.0186 + 0.249i)16-s + (−0.0993 − 0.0306i)17-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.364−0.931i)Λ(2−s)
Λ(s)=(=(294s/2ΓC(s+1/2)L(s)(−0.364−0.931i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.364−0.931i
|
Analytic conductor: |
2.34760 |
Root analytic conductor: |
1.53218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :1/2), −0.364−0.931i)
|
Particular Values
L(1) |
≈ |
0.0117487+0.0172140i |
L(21) |
≈ |
0.0117487+0.0172140i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.930+0.365i)T |
| 3 | 1+(0.0758+1.73i)T |
| 7 | 1+(2.14−1.54i)T |
good | 5 | 1+(2.77+1.89i)T+(1.82+4.65i)T2 |
| 11 | 1+(−0.905−6.00i)T+(−10.5+3.24i)T2 |
| 13 | 1+(−1.32+1.05i)T+(2.89−12.6i)T2 |
| 17 | 1+(0.409+0.126i)T+(14.0+9.57i)T2 |
| 19 | 1+(−0.985+0.568i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.51+4.91i)T+(−19.0+12.9i)T2 |
| 29 | 1+(7.31−1.66i)T+(26.1−12.5i)T2 |
| 31 | 1+(1.31+0.757i)T+(15.5+26.8i)T2 |
| 37 | 1+(7.65−7.09i)T+(2.76−36.8i)T2 |
| 41 | 1+(9.57−4.61i)T+(25.5−32.0i)T2 |
| 43 | 1+(6.51+3.13i)T+(26.8+33.6i)T2 |
| 47 | 1+(−1.97+5.02i)T+(−34.4−31.9i)T2 |
| 53 | 1+(0.516−0.556i)T+(−3.96−52.8i)T2 |
| 59 | 1+(7.56−5.15i)T+(21.5−54.9i)T2 |
| 61 | 1+(3.47+3.74i)T+(−4.55+60.8i)T2 |
| 67 | 1+(−3.86+6.69i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−13.2−3.03i)T+(63.9+30.8i)T2 |
| 73 | 1+(1.42−0.559i)T+(53.5−49.6i)T2 |
| 79 | 1+(2.37+4.12i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−2.83+3.54i)T+(−18.4−80.9i)T2 |
| 89 | 1+(−3.81−0.574i)T+(85.0+26.2i)T2 |
| 97 | 1+4.18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.26528411824243717030465250523, −11.45612666168808340721920010101, −10.08133075387657649237021637199, −8.998020287591067928581220165680, −8.300598139873502154975543737521, −7.34815201221961675003617173696, −6.57836011980463426679776374717, −4.98093301312818178153865369674, −3.46224866567673495702075719463, −1.84123487052234960793802802321,
0.01855470263861703250851748164, 3.41378309069636032261004374215, 3.69453475354283410941767010358, 5.64316236714076041051691402235, 6.66375163640761394731865847999, 7.73198353223053309667435484078, 8.691095930991834223908704469060, 9.585274821953043280062127311816, 10.72667526650137426590154410351, 11.10252850563848246108792181254