L(s) = 1 | + (0.930 + 0.365i)2-s + (1.34 − 1.09i)3-s + (0.733 + 0.680i)4-s + (−3.54 − 2.41i)5-s + (1.65 − 0.524i)6-s + (0.973 − 2.46i)7-s + (0.433 + 0.900i)8-s + (0.618 − 2.93i)9-s + (−2.41 − 3.54i)10-s + (0.317 + 2.10i)11-s + (1.72 + 0.114i)12-s + (0.621 − 0.495i)13-s + (1.80 − 1.93i)14-s + (−7.41 + 0.618i)15-s + (0.0747 + 0.997i)16-s + (7.16 + 2.21i)17-s + ⋯ |
L(s) = 1 | + (0.658 + 0.258i)2-s + (0.776 − 0.630i)3-s + (0.366 + 0.340i)4-s + (−1.58 − 1.08i)5-s + (0.673 − 0.214i)6-s + (0.367 − 0.929i)7-s + (0.153 + 0.318i)8-s + (0.206 − 0.978i)9-s + (−0.765 − 1.12i)10-s + (0.0957 + 0.635i)11-s + (0.498 + 0.0331i)12-s + (0.172 − 0.137i)13-s + (0.482 − 0.516i)14-s + (−1.91 + 0.159i)15-s + (0.0186 + 0.249i)16-s + (1.73 + 0.536i)17-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.547+0.836i)Λ(2−s)
Λ(s)=(=(294s/2ΓC(s+1/2)L(s)(0.547+0.836i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.547+0.836i
|
Analytic conductor: |
2.34760 |
Root analytic conductor: |
1.53218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :1/2), 0.547+0.836i)
|
Particular Values
L(1) |
≈ |
1.70704−0.922672i |
L(21) |
≈ |
1.70704−0.922672i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.930−0.365i)T |
| 3 | 1+(−1.34+1.09i)T |
| 7 | 1+(−0.973+2.46i)T |
good | 5 | 1+(3.54+2.41i)T+(1.82+4.65i)T2 |
| 11 | 1+(−0.317−2.10i)T+(−10.5+3.24i)T2 |
| 13 | 1+(−0.621+0.495i)T+(2.89−12.6i)T2 |
| 17 | 1+(−7.16−2.21i)T+(14.0+9.57i)T2 |
| 19 | 1+(1.88−1.08i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.36−4.43i)T+(−19.0+12.9i)T2 |
| 29 | 1+(6.59−1.50i)T+(26.1−12.5i)T2 |
| 31 | 1+(2.56+1.48i)T+(15.5+26.8i)T2 |
| 37 | 1+(−0.202+0.187i)T+(2.76−36.8i)T2 |
| 41 | 1+(−5.29+2.54i)T+(25.5−32.0i)T2 |
| 43 | 1+(−4.05−1.95i)T+(26.8+33.6i)T2 |
| 47 | 1+(0.177−0.451i)T+(−34.4−31.9i)T2 |
| 53 | 1+(−3.48+3.75i)T+(−3.96−52.8i)T2 |
| 59 | 1+(−3.31+2.26i)T+(21.5−54.9i)T2 |
| 61 | 1+(1.09+1.18i)T+(−4.55+60.8i)T2 |
| 67 | 1+(−2.16+3.75i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−2.36−0.540i)T+(63.9+30.8i)T2 |
| 73 | 1+(11.5−4.52i)T+(53.5−49.6i)T2 |
| 79 | 1+(−5.04−8.74i)T+(−39.5+68.4i)T2 |
| 83 | 1+(7.49−9.39i)T+(−18.4−80.9i)T2 |
| 89 | 1+(5.32+0.803i)T+(85.0+26.2i)T2 |
| 97 | 1−3.52iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.99927249761368912518313432871, −11.04937872703631124363019498454, −9.517533479811425931192947541025, −8.300705014421327723272632424245, −7.68828393082573082865471406920, −7.18918362379481073128004045646, −5.42412472650619859643802655989, −4.07123723101514385114716364575, −3.60710530435804225854873142675, −1.30048789037884062168529084630,
2.68060236393400193227796475766, 3.43815802724841039355176605681, 4.41960179528052652508697074232, 5.75108046102807883747322442404, 7.25631127676510160922030518829, 8.032762455889741229730903510258, 9.003788858882179921858684371134, 10.34925610715215602424444066255, 11.13707415528664252483874027891, 11.76046521481850453274485202722