L(s) = 1 | + (0.930 + 0.365i)2-s + (−1.67 − 0.425i)3-s + (0.733 + 0.680i)4-s + (0.562 + 0.383i)5-s + (−1.40 − 1.00i)6-s + (−1.02 + 2.43i)7-s + (0.433 + 0.900i)8-s + (2.63 + 1.42i)9-s + (0.383 + 0.562i)10-s + (0.601 + 3.99i)11-s + (−0.941 − 1.45i)12-s + (1.92 − 1.53i)13-s + (−1.84 + 1.89i)14-s + (−0.780 − 0.883i)15-s + (0.0747 + 0.997i)16-s + (1.73 + 0.533i)17-s + ⋯ |
L(s) = 1 | + (0.658 + 0.258i)2-s + (−0.969 − 0.245i)3-s + (0.366 + 0.340i)4-s + (0.251 + 0.171i)5-s + (−0.574 − 0.412i)6-s + (−0.388 + 0.921i)7-s + (0.153 + 0.318i)8-s + (0.879 + 0.476i)9-s + (0.121 + 0.177i)10-s + (0.181 + 1.20i)11-s + (−0.271 − 0.419i)12-s + (0.534 − 0.426i)13-s + (−0.493 + 0.505i)14-s + (−0.201 − 0.227i)15-s + (0.0186 + 0.249i)16-s + (0.419 + 0.129i)17-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.384−0.922i)Λ(2−s)
Λ(s)=(=(294s/2ΓC(s+1/2)L(s)(0.384−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.384−0.922i
|
Analytic conductor: |
2.34760 |
Root analytic conductor: |
1.53218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :1/2), 0.384−0.922i)
|
Particular Values
L(1) |
≈ |
1.17417+0.782466i |
L(21) |
≈ |
1.17417+0.782466i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.930−0.365i)T |
| 3 | 1+(1.67+0.425i)T |
| 7 | 1+(1.02−2.43i)T |
good | 5 | 1+(−0.562−0.383i)T+(1.82+4.65i)T2 |
| 11 | 1+(−0.601−3.99i)T+(−10.5+3.24i)T2 |
| 13 | 1+(−1.92+1.53i)T+(2.89−12.6i)T2 |
| 17 | 1+(−1.73−0.533i)T+(14.0+9.57i)T2 |
| 19 | 1+(−1.85+1.07i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.52−8.18i)T+(−19.0+12.9i)T2 |
| 29 | 1+(5.96−1.36i)T+(26.1−12.5i)T2 |
| 31 | 1+(4.37+2.52i)T+(15.5+26.8i)T2 |
| 37 | 1+(−6.91+6.41i)T+(2.76−36.8i)T2 |
| 41 | 1+(6.53−3.14i)T+(25.5−32.0i)T2 |
| 43 | 1+(−1.51−0.731i)T+(26.8+33.6i)T2 |
| 47 | 1+(−4.27+10.8i)T+(−34.4−31.9i)T2 |
| 53 | 1+(−7.86+8.47i)T+(−3.96−52.8i)T2 |
| 59 | 1+(0.00789−0.00538i)T+(21.5−54.9i)T2 |
| 61 | 1+(−2.82−3.04i)T+(−4.55+60.8i)T2 |
| 67 | 1+(−3.82+6.62i)T+(−33.5−58.0i)T2 |
| 71 | 1+(5.04+1.15i)T+(63.9+30.8i)T2 |
| 73 | 1+(4.71−1.84i)T+(53.5−49.6i)T2 |
| 79 | 1+(−1.53−2.65i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.403−0.505i)T+(−18.4−80.9i)T2 |
| 89 | 1+(−10.5−1.59i)T+(85.0+26.2i)T2 |
| 97 | 1+9.68iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.96890534635373256602670511554, −11.38463242907373489026420556351, −10.16857327385646447136464580625, −9.286164932601183087197944496426, −7.70483654700955826162640565295, −6.87163777401084216727494327779, −5.78122358846713221941574844140, −5.25355712642200064683113664614, −3.75283755323079835062253397239, −2.02486784880594905487907834369,
1.06072911517188429279514998942, 3.39294845618648860709279715111, 4.36964701194552636227148752528, 5.60621022619479992522105035910, 6.34812293308006832940445187547, 7.37504403240431869121198234923, 8.998751911147031036432994566886, 10.05918447134685454506299825295, 10.90411695222140281189244283674, 11.45299949231272188123741086494