Properties

Label 2-294-147.101-c1-0-8
Degree $2$
Conductor $294$
Sign $0.803 - 0.595i$
Analytic cond. $2.34760$
Root an. cond. $1.53218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.930 − 0.365i)2-s + (1.16 + 1.27i)3-s + (0.733 + 0.680i)4-s + (3.54 + 2.41i)5-s + (−0.619 − 1.61i)6-s + (0.973 − 2.46i)7-s + (−0.433 − 0.900i)8-s + (−0.274 + 2.98i)9-s + (−2.41 − 3.54i)10-s + (−0.317 − 2.10i)11-s + (−0.0145 + 1.73i)12-s + (0.621 − 0.495i)13-s + (−1.80 + 1.93i)14-s + (1.04 + 7.36i)15-s + (0.0747 + 0.997i)16-s + (−7.16 − 2.21i)17-s + ⋯
L(s)  = 1  + (−0.658 − 0.258i)2-s + (0.673 + 0.738i)3-s + (0.366 + 0.340i)4-s + (1.58 + 1.08i)5-s + (−0.252 − 0.660i)6-s + (0.367 − 0.929i)7-s + (−0.153 − 0.318i)8-s + (−0.0914 + 0.995i)9-s + (−0.765 − 1.12i)10-s + (−0.0957 − 0.635i)11-s + (−0.00420 + 0.499i)12-s + (0.172 − 0.137i)13-s + (−0.482 + 0.516i)14-s + (0.270 + 1.90i)15-s + (0.0186 + 0.249i)16-s + (−1.73 − 0.536i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 - 0.595i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.803 - 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(294\)    =    \(2 \cdot 3 \cdot 7^{2}\)
Sign: $0.803 - 0.595i$
Analytic conductor: \(2.34760\)
Root analytic conductor: \(1.53218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{294} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 294,\ (\ :1/2),\ 0.803 - 0.595i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.40634 + 0.464275i\)
\(L(\frac12)\) \(\approx\) \(1.40634 + 0.464275i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.930 + 0.365i)T \)
3 \( 1 + (-1.16 - 1.27i)T \)
7 \( 1 + (-0.973 + 2.46i)T \)
good5 \( 1 + (-3.54 - 2.41i)T + (1.82 + 4.65i)T^{2} \)
11 \( 1 + (0.317 + 2.10i)T + (-10.5 + 3.24i)T^{2} \)
13 \( 1 + (-0.621 + 0.495i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (7.16 + 2.21i)T + (14.0 + 9.57i)T^{2} \)
19 \( 1 + (1.88 - 1.08i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.36 + 4.43i)T + (-19.0 + 12.9i)T^{2} \)
29 \( 1 + (-6.59 + 1.50i)T + (26.1 - 12.5i)T^{2} \)
31 \( 1 + (2.56 + 1.48i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-0.202 + 0.187i)T + (2.76 - 36.8i)T^{2} \)
41 \( 1 + (5.29 - 2.54i)T + (25.5 - 32.0i)T^{2} \)
43 \( 1 + (-4.05 - 1.95i)T + (26.8 + 33.6i)T^{2} \)
47 \( 1 + (-0.177 + 0.451i)T + (-34.4 - 31.9i)T^{2} \)
53 \( 1 + (3.48 - 3.75i)T + (-3.96 - 52.8i)T^{2} \)
59 \( 1 + (3.31 - 2.26i)T + (21.5 - 54.9i)T^{2} \)
61 \( 1 + (1.09 + 1.18i)T + (-4.55 + 60.8i)T^{2} \)
67 \( 1 + (-2.16 + 3.75i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (2.36 + 0.540i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (11.5 - 4.52i)T + (53.5 - 49.6i)T^{2} \)
79 \( 1 + (-5.04 - 8.74i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-7.49 + 9.39i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (-5.32 - 0.803i)T + (85.0 + 26.2i)T^{2} \)
97 \( 1 - 3.52iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.18503654805816045423064166226, −10.67866918112596620955589717043, −10.11458304291874815538006317294, −9.215488363048619492217652102294, −8.326709011378899488246353198072, −7.04975820098991367910196917583, −6.13593890401865971227387019606, −4.53818737741043830303533127266, −3.04375963305569213371545345025, −2.06706684860733592834350772301, 1.66149007037297824206324079622, 2.30270609053053383247974156453, 4.80466382467439412508456889393, 5.96430201535233678258619535133, 6.72568843316875315989769972934, 8.194637591202660129393403660539, 8.950256022323884352356592573159, 9.277645556045365634853632368511, 10.43977014802321106803375220822, 11.87881387464725554613046192295

Graph of the $Z$-function along the critical line