L(s) = 1 | + (−0.930 − 0.365i)2-s + (1.16 + 1.27i)3-s + (0.733 + 0.680i)4-s + (3.54 + 2.41i)5-s + (−0.619 − 1.61i)6-s + (0.973 − 2.46i)7-s + (−0.433 − 0.900i)8-s + (−0.274 + 2.98i)9-s + (−2.41 − 3.54i)10-s + (−0.317 − 2.10i)11-s + (−0.0145 + 1.73i)12-s + (0.621 − 0.495i)13-s + (−1.80 + 1.93i)14-s + (1.04 + 7.36i)15-s + (0.0747 + 0.997i)16-s + (−7.16 − 2.21i)17-s + ⋯ |
L(s) = 1 | + (−0.658 − 0.258i)2-s + (0.673 + 0.738i)3-s + (0.366 + 0.340i)4-s + (1.58 + 1.08i)5-s + (−0.252 − 0.660i)6-s + (0.367 − 0.929i)7-s + (−0.153 − 0.318i)8-s + (−0.0914 + 0.995i)9-s + (−0.765 − 1.12i)10-s + (−0.0957 − 0.635i)11-s + (−0.00420 + 0.499i)12-s + (0.172 − 0.137i)13-s + (−0.482 + 0.516i)14-s + (0.270 + 1.90i)15-s + (0.0186 + 0.249i)16-s + (−1.73 − 0.536i)17-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.803−0.595i)Λ(2−s)
Λ(s)=(=(294s/2ΓC(s+1/2)L(s)(0.803−0.595i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.803−0.595i
|
Analytic conductor: |
2.34760 |
Root analytic conductor: |
1.53218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :1/2), 0.803−0.595i)
|
Particular Values
L(1) |
≈ |
1.40634+0.464275i |
L(21) |
≈ |
1.40634+0.464275i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.930+0.365i)T |
| 3 | 1+(−1.16−1.27i)T |
| 7 | 1+(−0.973+2.46i)T |
good | 5 | 1+(−3.54−2.41i)T+(1.82+4.65i)T2 |
| 11 | 1+(0.317+2.10i)T+(−10.5+3.24i)T2 |
| 13 | 1+(−0.621+0.495i)T+(2.89−12.6i)T2 |
| 17 | 1+(7.16+2.21i)T+(14.0+9.57i)T2 |
| 19 | 1+(1.88−1.08i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.36+4.43i)T+(−19.0+12.9i)T2 |
| 29 | 1+(−6.59+1.50i)T+(26.1−12.5i)T2 |
| 31 | 1+(2.56+1.48i)T+(15.5+26.8i)T2 |
| 37 | 1+(−0.202+0.187i)T+(2.76−36.8i)T2 |
| 41 | 1+(5.29−2.54i)T+(25.5−32.0i)T2 |
| 43 | 1+(−4.05−1.95i)T+(26.8+33.6i)T2 |
| 47 | 1+(−0.177+0.451i)T+(−34.4−31.9i)T2 |
| 53 | 1+(3.48−3.75i)T+(−3.96−52.8i)T2 |
| 59 | 1+(3.31−2.26i)T+(21.5−54.9i)T2 |
| 61 | 1+(1.09+1.18i)T+(−4.55+60.8i)T2 |
| 67 | 1+(−2.16+3.75i)T+(−33.5−58.0i)T2 |
| 71 | 1+(2.36+0.540i)T+(63.9+30.8i)T2 |
| 73 | 1+(11.5−4.52i)T+(53.5−49.6i)T2 |
| 79 | 1+(−5.04−8.74i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−7.49+9.39i)T+(−18.4−80.9i)T2 |
| 89 | 1+(−5.32−0.803i)T+(85.0+26.2i)T2 |
| 97 | 1−3.52iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.18503654805816045423064166226, −10.67866918112596620955589717043, −10.11458304291874815538006317294, −9.215488363048619492217652102294, −8.326709011378899488246353198072, −7.04975820098991367910196917583, −6.13593890401865971227387019606, −4.53818737741043830303533127266, −3.04375963305569213371545345025, −2.06706684860733592834350772301,
1.66149007037297824206324079622, 2.30270609053053383247974156453, 4.80466382467439412508456889393, 5.96430201535233678258619535133, 6.72568843316875315989769972934, 8.194637591202660129393403660539, 8.950256022323884352356592573159, 9.277645556045365634853632368511, 10.43977014802321106803375220822, 11.87881387464725554613046192295