L(s) = 1 | + (0.781 + 0.623i)2-s + (−1.32 + 1.11i)3-s + (0.222 + 0.974i)4-s + (−3.37 − 1.62i)5-s + (−1.73 + 0.0435i)6-s + (−0.0659 + 2.64i)7-s + (−0.433 + 0.900i)8-s + (0.519 − 2.95i)9-s + (−1.62 − 3.37i)10-s + (−1.00 − 0.803i)11-s + (−1.38 − 1.04i)12-s + (−5.22 − 4.16i)13-s + (−1.70 + 2.02i)14-s + (6.28 − 1.60i)15-s + (−0.900 + 0.433i)16-s + (−0.308 + 1.35i)17-s + ⋯ |
L(s) = 1 | + (0.552 + 0.440i)2-s + (−0.765 + 0.642i)3-s + (0.111 + 0.487i)4-s + (−1.50 − 0.726i)5-s + (−0.706 + 0.0177i)6-s + (−0.0249 + 0.999i)7-s + (−0.153 + 0.318i)8-s + (0.173 − 0.984i)9-s + (−0.514 − 1.06i)10-s + (−0.303 − 0.242i)11-s + (−0.398 − 0.301i)12-s + (−1.44 − 1.15i)13-s + (−0.454 + 0.541i)14-s + (1.62 − 0.413i)15-s + (−0.225 + 0.108i)16-s + (−0.0747 + 0.327i)17-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.867+0.497i)Λ(2−s)
Λ(s)=(=(294s/2ΓC(s+1/2)L(s)(−0.867+0.497i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.867+0.497i
|
Analytic conductor: |
2.34760 |
Root analytic conductor: |
1.53218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :1/2), −0.867+0.497i)
|
Particular Values
L(1) |
≈ |
0.0644852−0.242304i |
L(21) |
≈ |
0.0644852−0.242304i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.781−0.623i)T |
| 3 | 1+(1.32−1.11i)T |
| 7 | 1+(0.0659−2.64i)T |
good | 5 | 1+(3.37+1.62i)T+(3.11+3.90i)T2 |
| 11 | 1+(1.00+0.803i)T+(2.44+10.7i)T2 |
| 13 | 1+(5.22+4.16i)T+(2.89+12.6i)T2 |
| 17 | 1+(0.308−1.35i)T+(−15.3−7.37i)T2 |
| 19 | 1−3.51iT−19T2 |
| 23 | 1+(6.90−1.57i)T+(20.7−9.97i)T2 |
| 29 | 1+(−1.86−0.426i)T+(26.1+12.5i)T2 |
| 31 | 1−2.07iT−31T2 |
| 37 | 1+(1.39−6.10i)T+(−33.3−16.0i)T2 |
| 41 | 1+(−4.71−2.27i)T+(25.5+32.0i)T2 |
| 43 | 1+(−9.86+4.75i)T+(26.8−33.6i)T2 |
| 47 | 1+(1.70−2.14i)T+(−10.4−45.8i)T2 |
| 53 | 1+(14.1−3.22i)T+(47.7−22.9i)T2 |
| 59 | 1+(2.50−1.20i)T+(36.7−46.1i)T2 |
| 61 | 1+(0.509+0.116i)T+(54.9+26.4i)T2 |
| 67 | 1+9.25T+67T2 |
| 71 | 1+(−9.61+2.19i)T+(63.9−30.8i)T2 |
| 73 | 1+(−6.25+4.98i)T+(16.2−71.1i)T2 |
| 79 | 1+0.520T+79T2 |
| 83 | 1+(5.43+6.81i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−3.62−4.54i)T+(−19.8+86.7i)T2 |
| 97 | 1+0.909iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.32872490878190259990959644028, −11.76348947135627888965388988948, −10.63839534560078641029538430403, −9.466691920807546235783454453641, −8.242247106831826835028931545615, −7.65197538916245610027636143668, −6.07122299908982143087002355127, −5.19821189164580202073222282369, −4.39286975048049044249817795873, −3.20058636099949165475265285335,
0.16239757101005030999019189674, 2.44053255303087753124971815005, 4.09486743687396872401427958826, 4.74884904795076866715528489803, 6.47799723170091932137934116916, 7.26889107756393991627336397784, 7.78467607714389781350966208910, 9.720462764991687754284179491828, 10.79153416512118445363510584744, 11.32518105873153335502064974818