L(s) = 1 | + (0.781 + 0.623i)2-s + (−1.32 + 1.11i)3-s + (0.222 + 0.974i)4-s + (−3.37 − 1.62i)5-s + (−1.73 + 0.0435i)6-s + (−0.0659 + 2.64i)7-s + (−0.433 + 0.900i)8-s + (0.519 − 2.95i)9-s + (−1.62 − 3.37i)10-s + (−1.00 − 0.803i)11-s + (−1.38 − 1.04i)12-s + (−5.22 − 4.16i)13-s + (−1.70 + 2.02i)14-s + (6.28 − 1.60i)15-s + (−0.900 + 0.433i)16-s + (−0.308 + 1.35i)17-s + ⋯ |
L(s) = 1 | + (0.552 + 0.440i)2-s + (−0.765 + 0.642i)3-s + (0.111 + 0.487i)4-s + (−1.50 − 0.726i)5-s + (−0.706 + 0.0177i)6-s + (−0.0249 + 0.999i)7-s + (−0.153 + 0.318i)8-s + (0.173 − 0.984i)9-s + (−0.514 − 1.06i)10-s + (−0.303 − 0.242i)11-s + (−0.398 − 0.301i)12-s + (−1.44 − 1.15i)13-s + (−0.454 + 0.541i)14-s + (1.62 − 0.413i)15-s + (−0.225 + 0.108i)16-s + (−0.0747 + 0.327i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.867 + 0.497i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.867 + 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0644852 - 0.242304i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0644852 - 0.242304i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.781 - 0.623i)T \) |
| 3 | \( 1 + (1.32 - 1.11i)T \) |
| 7 | \( 1 + (0.0659 - 2.64i)T \) |
good | 5 | \( 1 + (3.37 + 1.62i)T + (3.11 + 3.90i)T^{2} \) |
| 11 | \( 1 + (1.00 + 0.803i)T + (2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (5.22 + 4.16i)T + (2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + (0.308 - 1.35i)T + (-15.3 - 7.37i)T^{2} \) |
| 19 | \( 1 - 3.51iT - 19T^{2} \) |
| 23 | \( 1 + (6.90 - 1.57i)T + (20.7 - 9.97i)T^{2} \) |
| 29 | \( 1 + (-1.86 - 0.426i)T + (26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 - 2.07iT - 31T^{2} \) |
| 37 | \( 1 + (1.39 - 6.10i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + (-4.71 - 2.27i)T + (25.5 + 32.0i)T^{2} \) |
| 43 | \( 1 + (-9.86 + 4.75i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (1.70 - 2.14i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (14.1 - 3.22i)T + (47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + (2.50 - 1.20i)T + (36.7 - 46.1i)T^{2} \) |
| 61 | \( 1 + (0.509 + 0.116i)T + (54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + 9.25T + 67T^{2} \) |
| 71 | \( 1 + (-9.61 + 2.19i)T + (63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (-6.25 + 4.98i)T + (16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + 0.520T + 79T^{2} \) |
| 83 | \( 1 + (5.43 + 6.81i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-3.62 - 4.54i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + 0.909iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.32872490878190259990959644028, −11.76348947135627888965388988948, −10.63839534560078641029538430403, −9.466691920807546235783454453641, −8.242247106831826835028931545615, −7.65197538916245610027636143668, −6.07122299908982143087002355127, −5.19821189164580202073222282369, −4.39286975048049044249817795873, −3.20058636099949165475265285335,
0.16239757101005030999019189674, 2.44053255303087753124971815005, 4.09486743687396872401427958826, 4.74884904795076866715528489803, 6.47799723170091932137934116916, 7.26889107756393991627336397784, 7.78467607714389781350966208910, 9.720462764991687754284179491828, 10.79153416512118445363510584744, 11.32518105873153335502064974818