L(s) = 1 | + 4i·2-s + (−10.8 + 11.2i)3-s − 16·4-s − 104.·5-s + (−44.9 − 43.2i)6-s − 64i·8-s + (−9.33 − 242. i)9-s − 419. i·10-s − 83.8i·11-s + (172. − 179. i)12-s + 382. i·13-s + (1.13e3 − 1.17e3i)15-s + 256·16-s − 1.43e3·17-s + (971. − 37.3i)18-s − 2.24e3i·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.693 + 0.720i)3-s − 0.5·4-s − 1.87·5-s + (−0.509 − 0.490i)6-s − 0.353i·8-s + (−0.0384 − 0.999i)9-s − 1.32i·10-s − 0.208i·11-s + (0.346 − 0.360i)12-s + 0.628i·13-s + (1.29 − 1.35i)15-s + 0.250·16-s − 1.20·17-s + (0.706 − 0.0271i)18-s − 1.42i·19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.373−0.927i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.373−0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.373−0.927i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), −0.373−0.927i)
|
Particular Values
L(3) |
≈ |
0.3439256839 |
L(21) |
≈ |
0.3439256839 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 3 | 1+(10.8−11.2i)T |
| 7 | 1 |
good | 5 | 1+104.T+3.12e3T2 |
| 11 | 1+83.8iT−1.61e5T2 |
| 13 | 1−382.iT−3.71e5T2 |
| 17 | 1+1.43e3T+1.41e6T2 |
| 19 | 1+2.24e3iT−2.47e6T2 |
| 23 | 1+4.69e3iT−6.43e6T2 |
| 29 | 1−3.17e3iT−2.05e7T2 |
| 31 | 1−2.36e3iT−2.86e7T2 |
| 37 | 1+1.14e4T+6.93e7T2 |
| 41 | 1+3.03e3T+1.15e8T2 |
| 43 | 1+1.28e4T+1.47e8T2 |
| 47 | 1+4.80e3T+2.29e8T2 |
| 53 | 1−858.iT−4.18e8T2 |
| 59 | 1+3.19e4T+7.14e8T2 |
| 61 | 1−2.90e4iT−8.44e8T2 |
| 67 | 1−3.70e4T+1.35e9T2 |
| 71 | 1+3.39e4iT−1.80e9T2 |
| 73 | 1+5.24e4iT−2.07e9T2 |
| 79 | 1+4.06e4T+3.07e9T2 |
| 83 | 1+1.58e4T+3.93e9T2 |
| 89 | 1+1.44e5T+5.58e9T2 |
| 97 | 1+7.65e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20545867458418565883333107380, −10.53367108472170535745678608379, −8.924620524802212093858793500480, −8.548228097463028054744212014163, −7.06287602753348041771750186843, −6.59678603115269440921519170358, −4.82545440493059264371289882214, −4.44571681934408645338207778002, −3.28127376128120027420217036433, −0.44720427278187012541325096198,
0.25856805584792329759853516258, 1.64345601480952341771490549808, 3.31738712515443015350632592539, 4.30359678062316363772355705700, 5.46249849096673015204109100532, 6.92355319503798119145526761319, 7.82443331517056686957039510968, 8.434018673047925058057673732121, 10.00628463283514185154544758066, 11.10624525611457227411542643411