Properties

Label 2-294-21.20-c5-0-16
Degree $2$
Conductor $294$
Sign $-0.881 + 0.472i$
Analytic cond. $47.1528$
Root an. cond. $6.86679$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·2-s + (12.3 + 9.52i)3-s − 16·4-s − 12.2·5-s + (−38.1 + 49.3i)6-s − 64i·8-s + (61.5 + 235. i)9-s − 48.8i·10-s + 198. i·11-s + (−197. − 152. i)12-s + 369. i·13-s + (−150. − 116. i)15-s + 256·16-s + 896.·17-s + (−940. + 246. i)18-s + 1.56e3i·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + (0.791 + 0.611i)3-s − 0.5·4-s − 0.218·5-s + (−0.432 + 0.559i)6-s − 0.353i·8-s + (0.253 + 0.967i)9-s − 0.154i·10-s + 0.494i·11-s + (−0.395 − 0.305i)12-s + 0.606i·13-s + (−0.172 − 0.133i)15-s + 0.250·16-s + 0.752·17-s + (−0.684 + 0.179i)18-s + 0.993i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 + 0.472i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.881 + 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(294\)    =    \(2 \cdot 3 \cdot 7^{2}\)
Sign: $-0.881 + 0.472i$
Analytic conductor: \(47.1528\)
Root analytic conductor: \(6.86679\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{294} (293, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 294,\ (\ :5/2),\ -0.881 + 0.472i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.507469300\)
\(L(\frac12)\) \(\approx\) \(1.507469300\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4iT \)
3 \( 1 + (-12.3 - 9.52i)T \)
7 \( 1 \)
good5 \( 1 + 12.2T + 3.12e3T^{2} \)
11 \( 1 - 198. iT - 1.61e5T^{2} \)
13 \( 1 - 369. iT - 3.71e5T^{2} \)
17 \( 1 - 896.T + 1.41e6T^{2} \)
19 \( 1 - 1.56e3iT - 2.47e6T^{2} \)
23 \( 1 + 793. iT - 6.43e6T^{2} \)
29 \( 1 - 496. iT - 2.05e7T^{2} \)
31 \( 1 + 2.72e3iT - 2.86e7T^{2} \)
37 \( 1 - 6.46e3T + 6.93e7T^{2} \)
41 \( 1 + 2.07e4T + 1.15e8T^{2} \)
43 \( 1 + 2.05e4T + 1.47e8T^{2} \)
47 \( 1 + 8.20e3T + 2.29e8T^{2} \)
53 \( 1 - 1.69e4iT - 4.18e8T^{2} \)
59 \( 1 + 6.61e3T + 7.14e8T^{2} \)
61 \( 1 + 5.55e4iT - 8.44e8T^{2} \)
67 \( 1 - 2.57e4T + 1.35e9T^{2} \)
71 \( 1 - 7.44e4iT - 1.80e9T^{2} \)
73 \( 1 - 3.30e4iT - 2.07e9T^{2} \)
79 \( 1 - 7.26e4T + 3.07e9T^{2} \)
83 \( 1 + 4.70e4T + 3.93e9T^{2} \)
89 \( 1 + 1.19e4T + 5.58e9T^{2} \)
97 \( 1 + 8.48e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44618693392962602785638540054, −10.06392869173096888858793719138, −9.646074494639052929727728255564, −8.418556204769572513639815656361, −7.83894332520388345279317265610, −6.73269375603385134327710905109, −5.40183721022034511777578469452, −4.33572359669992332368494719851, −3.40460250498688053615316063612, −1.79093661003629559881893998920, 0.35614375049210587406643120583, 1.57801649151986193240858033971, 2.90208410644541028529495577971, 3.68117666176465554429877731445, 5.18668241627423764910503638508, 6.55558640530163941385596390713, 7.76253641320282931167160896033, 8.453227673955830409935517620819, 9.455065331623830950572725998693, 10.32845332942050320318111892741

Graph of the $Z$-function along the critical line