L(s) = 1 | + 4i·2-s + (12.3 + 9.52i)3-s − 16·4-s − 12.2·5-s + (−38.1 + 49.3i)6-s − 64i·8-s + (61.5 + 235. i)9-s − 48.8i·10-s + 198. i·11-s + (−197. − 152. i)12-s + 369. i·13-s + (−150. − 116. i)15-s + 256·16-s + 896.·17-s + (−940. + 246. i)18-s + 1.56e3i·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.791 + 0.611i)3-s − 0.5·4-s − 0.218·5-s + (−0.432 + 0.559i)6-s − 0.353i·8-s + (0.253 + 0.967i)9-s − 0.154i·10-s + 0.494i·11-s + (−0.395 − 0.305i)12-s + 0.606i·13-s + (−0.172 − 0.133i)15-s + 0.250·16-s + 0.752·17-s + (−0.684 + 0.179i)18-s + 0.993i·19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.881+0.472i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.881+0.472i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.881+0.472i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), −0.881+0.472i)
|
Particular Values
L(3) |
≈ |
1.507469300 |
L(21) |
≈ |
1.507469300 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 3 | 1+(−12.3−9.52i)T |
| 7 | 1 |
good | 5 | 1+12.2T+3.12e3T2 |
| 11 | 1−198.iT−1.61e5T2 |
| 13 | 1−369.iT−3.71e5T2 |
| 17 | 1−896.T+1.41e6T2 |
| 19 | 1−1.56e3iT−2.47e6T2 |
| 23 | 1+793.iT−6.43e6T2 |
| 29 | 1−496.iT−2.05e7T2 |
| 31 | 1+2.72e3iT−2.86e7T2 |
| 37 | 1−6.46e3T+6.93e7T2 |
| 41 | 1+2.07e4T+1.15e8T2 |
| 43 | 1+2.05e4T+1.47e8T2 |
| 47 | 1+8.20e3T+2.29e8T2 |
| 53 | 1−1.69e4iT−4.18e8T2 |
| 59 | 1+6.61e3T+7.14e8T2 |
| 61 | 1+5.55e4iT−8.44e8T2 |
| 67 | 1−2.57e4T+1.35e9T2 |
| 71 | 1−7.44e4iT−1.80e9T2 |
| 73 | 1−3.30e4iT−2.07e9T2 |
| 79 | 1−7.26e4T+3.07e9T2 |
| 83 | 1+4.70e4T+3.93e9T2 |
| 89 | 1+1.19e4T+5.58e9T2 |
| 97 | 1+8.48e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44618693392962602785638540054, −10.06392869173096888858793719138, −9.646074494639052929727728255564, −8.418556204769572513639815656361, −7.83894332520388345279317265610, −6.73269375603385134327710905109, −5.40183721022034511777578469452, −4.33572359669992332368494719851, −3.40460250498688053615316063612, −1.79093661003629559881893998920,
0.35614375049210587406643120583, 1.57801649151986193240858033971, 2.90208410644541028529495577971, 3.68117666176465554429877731445, 5.18668241627423764910503638508, 6.55558640530163941385596390713, 7.76253641320282931167160896033, 8.453227673955830409935517620819, 9.455065331623830950572725998693, 10.32845332942050320318111892741