L(s) = 1 | + 1.46·3-s + 0.462·5-s − 0.323·7-s − 0.860·9-s + 5.58·11-s + 6.58·13-s + 0.676·15-s − 6.64·17-s − 2.64·19-s − 0.473·21-s + 4.86·23-s − 4.78·25-s − 5.64·27-s − 4.86·29-s + 6.46·31-s + 8.16·33-s − 0.149·35-s − 37-s + 9.62·39-s − 0.815·41-s − 1.87·43-s − 0.398·45-s − 1.11·47-s − 6.89·49-s − 9.72·51-s − 12.6·53-s + 2.58·55-s + ⋯ |
L(s) = 1 | + 0.844·3-s + 0.206·5-s − 0.122·7-s − 0.286·9-s + 1.68·11-s + 1.82·13-s + 0.174·15-s − 1.61·17-s − 0.607·19-s − 0.103·21-s + 1.01·23-s − 0.957·25-s − 1.08·27-s − 0.902·29-s + 1.16·31-s + 1.42·33-s − 0.0252·35-s − 0.164·37-s + 1.54·39-s − 0.127·41-s − 0.285·43-s − 0.0593·45-s − 0.163·47-s − 0.985·49-s − 1.36·51-s − 1.74·53-s + 0.348·55-s + ⋯ |
Λ(s)=(=(296s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(296s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.755193603 |
L(21) |
≈ |
1.755193603 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+T |
good | 3 | 1−1.46T+3T2 |
| 5 | 1−0.462T+5T2 |
| 7 | 1+0.323T+7T2 |
| 11 | 1−5.58T+11T2 |
| 13 | 1−6.58T+13T2 |
| 17 | 1+6.64T+17T2 |
| 19 | 1+2.64T+19T2 |
| 23 | 1−4.86T+23T2 |
| 29 | 1+4.86T+29T2 |
| 31 | 1−6.46T+31T2 |
| 41 | 1+0.815T+41T2 |
| 43 | 1+1.87T+43T2 |
| 47 | 1+1.11T+47T2 |
| 53 | 1+12.6T+53T2 |
| 59 | 1+0.128T+59T2 |
| 61 | 1+1.10T+61T2 |
| 67 | 1−13.4T+67T2 |
| 71 | 1+8.04T+71T2 |
| 73 | 1−3.58T+73T2 |
| 79 | 1+3.78T+79T2 |
| 83 | 1+14.6T+83T2 |
| 89 | 1−2.14T+89T2 |
| 97 | 1−1.05T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48486625577246254733228686920, −11.08368274153542791459108705379, −9.547408148510392708352804041462, −8.869996196977424984266331586994, −8.293683295342721729660434166900, −6.71769660084259130592038541006, −6.07682723621157549923626312270, −4.27208244246088495069323457097, −3.34243059582778935043951132583, −1.75209515526012064562747615162,
1.75209515526012064562747615162, 3.34243059582778935043951132583, 4.27208244246088495069323457097, 6.07682723621157549923626312270, 6.71769660084259130592038541006, 8.293683295342721729660434166900, 8.869996196977424984266331586994, 9.547408148510392708352804041462, 11.08368274153542791459108705379, 11.48486625577246254733228686920