Properties

Label 2-296-1.1-c1-0-3
Degree $2$
Conductor $296$
Sign $1$
Analytic cond. $2.36357$
Root an. cond. $1.53739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.46·3-s + 0.462·5-s − 0.323·7-s − 0.860·9-s + 5.58·11-s + 6.58·13-s + 0.676·15-s − 6.64·17-s − 2.64·19-s − 0.473·21-s + 4.86·23-s − 4.78·25-s − 5.64·27-s − 4.86·29-s + 6.46·31-s + 8.16·33-s − 0.149·35-s − 37-s + 9.62·39-s − 0.815·41-s − 1.87·43-s − 0.398·45-s − 1.11·47-s − 6.89·49-s − 9.72·51-s − 12.6·53-s + 2.58·55-s + ⋯
L(s)  = 1  + 0.844·3-s + 0.206·5-s − 0.122·7-s − 0.286·9-s + 1.68·11-s + 1.82·13-s + 0.174·15-s − 1.61·17-s − 0.607·19-s − 0.103·21-s + 1.01·23-s − 0.957·25-s − 1.08·27-s − 0.902·29-s + 1.16·31-s + 1.42·33-s − 0.0252·35-s − 0.164·37-s + 1.54·39-s − 0.127·41-s − 0.285·43-s − 0.0593·45-s − 0.163·47-s − 0.985·49-s − 1.36·51-s − 1.74·53-s + 0.348·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296\)    =    \(2^{3} \cdot 37\)
Sign: $1$
Analytic conductor: \(2.36357\)
Root analytic conductor: \(1.53739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 296,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.755193603\)
\(L(\frac12)\) \(\approx\) \(1.755193603\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - 1.46T + 3T^{2} \)
5 \( 1 - 0.462T + 5T^{2} \)
7 \( 1 + 0.323T + 7T^{2} \)
11 \( 1 - 5.58T + 11T^{2} \)
13 \( 1 - 6.58T + 13T^{2} \)
17 \( 1 + 6.64T + 17T^{2} \)
19 \( 1 + 2.64T + 19T^{2} \)
23 \( 1 - 4.86T + 23T^{2} \)
29 \( 1 + 4.86T + 29T^{2} \)
31 \( 1 - 6.46T + 31T^{2} \)
41 \( 1 + 0.815T + 41T^{2} \)
43 \( 1 + 1.87T + 43T^{2} \)
47 \( 1 + 1.11T + 47T^{2} \)
53 \( 1 + 12.6T + 53T^{2} \)
59 \( 1 + 0.128T + 59T^{2} \)
61 \( 1 + 1.10T + 61T^{2} \)
67 \( 1 - 13.4T + 67T^{2} \)
71 \( 1 + 8.04T + 71T^{2} \)
73 \( 1 - 3.58T + 73T^{2} \)
79 \( 1 + 3.78T + 79T^{2} \)
83 \( 1 + 14.6T + 83T^{2} \)
89 \( 1 - 2.14T + 89T^{2} \)
97 \( 1 - 1.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.48486625577246254733228686920, −11.08368274153542791459108705379, −9.547408148510392708352804041462, −8.869996196977424984266331586994, −8.293683295342721729660434166900, −6.71769660084259130592038541006, −6.07682723621157549923626312270, −4.27208244246088495069323457097, −3.34243059582778935043951132583, −1.75209515526012064562747615162, 1.75209515526012064562747615162, 3.34243059582778935043951132583, 4.27208244246088495069323457097, 6.07682723621157549923626312270, 6.71769660084259130592038541006, 8.293683295342721729660434166900, 8.869996196977424984266331586994, 9.547408148510392708352804041462, 11.08368274153542791459108705379, 11.48486625577246254733228686920

Graph of the $Z$-function along the critical line