L(s) = 1 | + (−1.00 − 0.994i)2-s + (−2.16 + 1.24i)3-s + (0.0206 + 1.99i)4-s + (−0.890 − 1.54i)5-s + (3.41 + 0.896i)6-s + (−1.76 − 3.05i)7-s + (1.96 − 2.03i)8-s + (1.61 − 2.79i)9-s + (−0.639 + 2.43i)10-s + 4.13i·11-s + (−2.54 − 4.29i)12-s + (−0.0436 − 0.0756i)13-s + (−1.26 + 4.81i)14-s + (3.85 + 2.22i)15-s + (−3.99 + 0.0824i)16-s + (6.70 + 3.87i)17-s + ⋯ |
L(s) = 1 | + (−0.710 − 0.703i)2-s + (−1.24 + 0.720i)3-s + (0.0103 + 0.999i)4-s + (−0.398 − 0.689i)5-s + (1.39 + 0.365i)6-s + (−0.665 − 1.15i)7-s + (0.696 − 0.717i)8-s + (0.538 − 0.932i)9-s + (−0.202 + 0.770i)10-s + 1.24i·11-s + (−0.733 − 1.24i)12-s + (−0.0121 − 0.0209i)13-s + (−0.338 + 1.28i)14-s + (0.994 + 0.574i)15-s + (−0.999 + 0.0206i)16-s + (1.62 + 0.939i)17-s + ⋯ |
Λ(s)=(=(296s/2ΓC(s)L(s)(0.908−0.418i)Λ(2−s)
Λ(s)=(=(296s/2ΓC(s+1/2)L(s)(0.908−0.418i)Λ(1−s)
Degree: |
2 |
Conductor: |
296
= 23⋅37
|
Sign: |
0.908−0.418i
|
Analytic conductor: |
2.36357 |
Root analytic conductor: |
1.53739 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ296(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 296, ( :1/2), 0.908−0.418i)
|
Particular Values
L(1) |
≈ |
0.438502+0.0962400i |
L(21) |
≈ |
0.438502+0.0962400i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.00+0.994i)T |
| 37 | 1+(−3.42+5.02i)T |
good | 3 | 1+(2.16−1.24i)T+(1.5−2.59i)T2 |
| 5 | 1+(0.890+1.54i)T+(−2.5+4.33i)T2 |
| 7 | 1+(1.76+3.05i)T+(−3.5+6.06i)T2 |
| 11 | 1−4.13iT−11T2 |
| 13 | 1+(0.0436+0.0756i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−6.70−3.87i)T+(8.5+14.7i)T2 |
| 19 | 1+(−2.34−4.05i)T+(−9.5+16.4i)T2 |
| 23 | 1−4.36iT−23T2 |
| 29 | 1+3.98T+29T2 |
| 31 | 1−1.77iT−31T2 |
| 41 | 1+(−4.07−7.06i)T+(−20.5+35.5i)T2 |
| 43 | 1−5.20T+43T2 |
| 47 | 1+4.78T+47T2 |
| 53 | 1+(−8.84−5.10i)T+(26.5+45.8i)T2 |
| 59 | 1+(−1.80+3.12i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.507−0.879i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.90+1.67i)T+(33.5−58.0i)T2 |
| 71 | 1+(−7.96−13.7i)T+(−35.5+61.4i)T2 |
| 73 | 1+14.8T+73T2 |
| 79 | 1+(−3.90+2.25i)T+(39.5−68.4i)T2 |
| 83 | 1+(7.49+4.32i)T+(41.5+71.8i)T2 |
| 89 | 1+(7.29+4.21i)T+(44.5+77.0i)T2 |
| 97 | 1−9.43iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.75513319593748603039745836968, −10.71403948182712390757755525852, −10.00286973998297247143019361562, −9.602681725557747198459262584136, −7.976355561499935584249827531065, −7.19643797466847152215149418948, −5.71417358908360539642526582064, −4.38328434160037812905414984202, −3.69158127480911962093431661275, −1.10285610436915826997111163068,
0.62525870046369957490939122784, 2.90739959048419881529054336403, 5.35958945115633516708427286219, 5.86753513295907513770551068790, 6.78758656392042722857818757675, 7.55992820108838619114371482691, 8.778863347856258080780461110472, 9.760937029227156605875762142438, 10.98067534102914517470817856774, 11.50120601402248711389732891146