L(s) = 1 | + (−1.00 − 0.994i)2-s + (−2.16 + 1.24i)3-s + (0.0206 + 1.99i)4-s + (−0.890 − 1.54i)5-s + (3.41 + 0.896i)6-s + (−1.76 − 3.05i)7-s + (1.96 − 2.03i)8-s + (1.61 − 2.79i)9-s + (−0.639 + 2.43i)10-s + 4.13i·11-s + (−2.54 − 4.29i)12-s + (−0.0436 − 0.0756i)13-s + (−1.26 + 4.81i)14-s + (3.85 + 2.22i)15-s + (−3.99 + 0.0824i)16-s + (6.70 + 3.87i)17-s + ⋯ |
L(s) = 1 | + (−0.710 − 0.703i)2-s + (−1.24 + 0.720i)3-s + (0.0103 + 0.999i)4-s + (−0.398 − 0.689i)5-s + (1.39 + 0.365i)6-s + (−0.665 − 1.15i)7-s + (0.696 − 0.717i)8-s + (0.538 − 0.932i)9-s + (−0.202 + 0.770i)10-s + 1.24i·11-s + (−0.733 − 1.24i)12-s + (−0.0121 − 0.0209i)13-s + (−0.338 + 1.28i)14-s + (0.994 + 0.574i)15-s + (−0.999 + 0.0206i)16-s + (1.62 + 0.939i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.908 - 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.438502 + 0.0962400i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.438502 + 0.0962400i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.00 + 0.994i)T \) |
| 37 | \( 1 + (-3.42 + 5.02i)T \) |
good | 3 | \( 1 + (2.16 - 1.24i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.890 + 1.54i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.76 + 3.05i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 4.13iT - 11T^{2} \) |
| 13 | \( 1 + (0.0436 + 0.0756i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.70 - 3.87i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.34 - 4.05i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 4.36iT - 23T^{2} \) |
| 29 | \( 1 + 3.98T + 29T^{2} \) |
| 31 | \( 1 - 1.77iT - 31T^{2} \) |
| 41 | \( 1 + (-4.07 - 7.06i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 5.20T + 43T^{2} \) |
| 47 | \( 1 + 4.78T + 47T^{2} \) |
| 53 | \( 1 + (-8.84 - 5.10i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.80 + 3.12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.507 - 0.879i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.90 + 1.67i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.96 - 13.7i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 14.8T + 73T^{2} \) |
| 79 | \( 1 + (-3.90 + 2.25i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.49 + 4.32i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (7.29 + 4.21i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.43iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75513319593748603039745836968, −10.71403948182712390757755525852, −10.00286973998297247143019361562, −9.602681725557747198459262584136, −7.976355561499935584249827531065, −7.19643797466847152215149418948, −5.71417358908360539642526582064, −4.38328434160037812905414984202, −3.69158127480911962093431661275, −1.10285610436915826997111163068,
0.62525870046369957490939122784, 2.90739959048419881529054336403, 5.35958945115633516708427286219, 5.86753513295907513770551068790, 6.78758656392042722857818757675, 7.55992820108838619114371482691, 8.778863347856258080780461110472, 9.760937029227156605875762142438, 10.98067534102914517470817856774, 11.50120601402248711389732891146