Properties

Label 2-296-296.101-c1-0-20
Degree 22
Conductor 296296
Sign 0.8960.443i0.896 - 0.443i
Analytic cond. 2.363572.36357
Root an. cond. 1.537391.53739
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.35 + 0.392i)2-s + (0.727 − 0.420i)3-s + (1.69 + 1.06i)4-s + (0.249 + 0.432i)5-s + (1.15 − 0.285i)6-s + (0.235 + 0.407i)7-s + (1.88 + 2.11i)8-s + (−1.14 + 1.98i)9-s + (0.169 + 0.685i)10-s − 1.14i·11-s + (1.67 + 0.0646i)12-s + (−3.10 − 5.37i)13-s + (0.159 + 0.646i)14-s + (0.363 + 0.209i)15-s + (1.72 + 3.60i)16-s + (−0.363 − 0.209i)17-s + ⋯
L(s)  = 1  + (0.960 + 0.277i)2-s + (0.420 − 0.242i)3-s + (0.846 + 0.532i)4-s + (0.111 + 0.193i)5-s + (0.470 − 0.116i)6-s + (0.0889 + 0.154i)7-s + (0.665 + 0.746i)8-s + (−0.382 + 0.662i)9-s + (0.0536 + 0.216i)10-s − 0.346i·11-s + (0.484 + 0.0186i)12-s + (−0.861 − 1.49i)13-s + (0.0427 + 0.172i)14-s + (0.0937 + 0.0541i)15-s + (0.431 + 0.901i)16-s + (−0.0881 − 0.0508i)17-s + ⋯

Functional equation

Λ(s)=(296s/2ΓC(s)L(s)=((0.8960.443i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(296s/2ΓC(s+1/2)L(s)=((0.8960.443i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 296296    =    23372^{3} \cdot 37
Sign: 0.8960.443i0.896 - 0.443i
Analytic conductor: 2.363572.36357
Root analytic conductor: 1.537391.53739
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ296(101,)\chi_{296} (101, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 296, ( :1/2), 0.8960.443i)(2,\ 296,\ (\ :1/2),\ 0.896 - 0.443i)

Particular Values

L(1)L(1) \approx 2.41658+0.565431i2.41658 + 0.565431i
L(12)L(\frac12) \approx 2.41658+0.565431i2.41658 + 0.565431i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.350.392i)T 1 + (-1.35 - 0.392i)T
37 1+(5.34+2.90i)T 1 + (5.34 + 2.90i)T
good3 1+(0.727+0.420i)T+(1.52.59i)T2 1 + (-0.727 + 0.420i)T + (1.5 - 2.59i)T^{2}
5 1+(0.2490.432i)T+(2.5+4.33i)T2 1 + (-0.249 - 0.432i)T + (-2.5 + 4.33i)T^{2}
7 1+(0.2350.407i)T+(3.5+6.06i)T2 1 + (-0.235 - 0.407i)T + (-3.5 + 6.06i)T^{2}
11 1+1.14iT11T2 1 + 1.14iT - 11T^{2}
13 1+(3.10+5.37i)T+(6.5+11.2i)T2 1 + (3.10 + 5.37i)T + (-6.5 + 11.2i)T^{2}
17 1+(0.363+0.209i)T+(8.5+14.7i)T2 1 + (0.363 + 0.209i)T + (8.5 + 14.7i)T^{2}
19 1+(1.392.41i)T+(9.5+16.4i)T2 1 + (-1.39 - 2.41i)T + (-9.5 + 16.4i)T^{2}
23 1+7.74iT23T2 1 + 7.74iT - 23T^{2}
29 1+5.48T+29T2 1 + 5.48T + 29T^{2}
31 17.40iT31T2 1 - 7.40iT - 31T^{2}
41 1+(1.512.61i)T+(20.5+35.5i)T2 1 + (-1.51 - 2.61i)T + (-20.5 + 35.5i)T^{2}
43 1+1.44T+43T2 1 + 1.44T + 43T^{2}
47 1+0.412T+47T2 1 + 0.412T + 47T^{2}
53 1+(6.89+3.98i)T+(26.5+45.8i)T2 1 + (6.89 + 3.98i)T + (26.5 + 45.8i)T^{2}
59 1+(5.739.92i)T+(29.551.0i)T2 1 + (5.73 - 9.92i)T + (-29.5 - 51.0i)T^{2}
61 1+(2.664.62i)T+(30.5+52.8i)T2 1 + (-2.66 - 4.62i)T + (-30.5 + 52.8i)T^{2}
67 1+(8.66+5.00i)T+(33.558.0i)T2 1 + (-8.66 + 5.00i)T + (33.5 - 58.0i)T^{2}
71 1+(2.854.94i)T+(35.5+61.4i)T2 1 + (-2.85 - 4.94i)T + (-35.5 + 61.4i)T^{2}
73 1+5.09T+73T2 1 + 5.09T + 73T^{2}
79 1+(5.88+3.39i)T+(39.568.4i)T2 1 + (-5.88 + 3.39i)T + (39.5 - 68.4i)T^{2}
83 1+(11.46.63i)T+(41.5+71.8i)T2 1 + (-11.4 - 6.63i)T + (41.5 + 71.8i)T^{2}
89 1+(10.0+5.80i)T+(44.5+77.0i)T2 1 + (10.0 + 5.80i)T + (44.5 + 77.0i)T^{2}
97 18.36iT97T2 1 - 8.36iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.21160550329829020031426634136, −10.91376901980250347641784266266, −10.30378912350638515725274951409, −8.577560006971596775091384494378, −7.904473999726819165837067143891, −6.91723355100902994522574777407, −5.68423050371746997785378485793, −4.88296392686743763682305005574, −3.26306550065223765541691652716, −2.35262631940459937586014086656, 1.91771258799043687497159019276, 3.35598851081208381578713843260, 4.39163985640075956692283161225, 5.46101142415887051611928176693, 6.70543104862531724108505236390, 7.57819909843212481738035429198, 9.338990995007024812066100002098, 9.571343892316556800516952036506, 11.13536081922160915747505451917, 11.71210116822765485703427522306

Graph of the ZZ-function along the critical line