L(s) = 1 | + (1.35 + 0.392i)2-s + (0.727 − 0.420i)3-s + (1.69 + 1.06i)4-s + (0.249 + 0.432i)5-s + (1.15 − 0.285i)6-s + (0.235 + 0.407i)7-s + (1.88 + 2.11i)8-s + (−1.14 + 1.98i)9-s + (0.169 + 0.685i)10-s − 1.14i·11-s + (1.67 + 0.0646i)12-s + (−3.10 − 5.37i)13-s + (0.159 + 0.646i)14-s + (0.363 + 0.209i)15-s + (1.72 + 3.60i)16-s + (−0.363 − 0.209i)17-s + ⋯ |
L(s) = 1 | + (0.960 + 0.277i)2-s + (0.420 − 0.242i)3-s + (0.846 + 0.532i)4-s + (0.111 + 0.193i)5-s + (0.470 − 0.116i)6-s + (0.0889 + 0.154i)7-s + (0.665 + 0.746i)8-s + (−0.382 + 0.662i)9-s + (0.0536 + 0.216i)10-s − 0.346i·11-s + (0.484 + 0.0186i)12-s + (−0.861 − 1.49i)13-s + (0.0427 + 0.172i)14-s + (0.0937 + 0.0541i)15-s + (0.431 + 0.901i)16-s + (−0.0881 − 0.0508i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.896 - 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.41658 + 0.565431i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.41658 + 0.565431i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.35 - 0.392i)T \) |
| 37 | \( 1 + (5.34 + 2.90i)T \) |
good | 3 | \( 1 + (-0.727 + 0.420i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.249 - 0.432i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.235 - 0.407i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 1.14iT - 11T^{2} \) |
| 13 | \( 1 + (3.10 + 5.37i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.363 + 0.209i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.39 - 2.41i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 7.74iT - 23T^{2} \) |
| 29 | \( 1 + 5.48T + 29T^{2} \) |
| 31 | \( 1 - 7.40iT - 31T^{2} \) |
| 41 | \( 1 + (-1.51 - 2.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 1.44T + 43T^{2} \) |
| 47 | \( 1 + 0.412T + 47T^{2} \) |
| 53 | \( 1 + (6.89 + 3.98i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.73 - 9.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.66 - 4.62i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.66 + 5.00i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.85 - 4.94i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5.09T + 73T^{2} \) |
| 79 | \( 1 + (-5.88 + 3.39i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-11.4 - 6.63i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (10.0 + 5.80i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 8.36iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.21160550329829020031426634136, −10.91376901980250347641784266266, −10.30378912350638515725274951409, −8.577560006971596775091384494378, −7.904473999726819165837067143891, −6.91723355100902994522574777407, −5.68423050371746997785378485793, −4.88296392686743763682305005574, −3.26306550065223765541691652716, −2.35262631940459937586014086656,
1.91771258799043687497159019276, 3.35598851081208381578713843260, 4.39163985640075956692283161225, 5.46101142415887051611928176693, 6.70543104862531724108505236390, 7.57819909843212481738035429198, 9.338990995007024812066100002098, 9.571343892316556800516952036506, 11.13536081922160915747505451917, 11.71210116822765485703427522306