L(s) = 1 | + (−1.17 − 0.781i)2-s + (−0.593 + 0.342i)3-s + (0.778 + 1.84i)4-s + (−1.02 − 1.77i)5-s + (0.967 + 0.0599i)6-s + (0.355 + 0.615i)7-s + (0.521 − 2.77i)8-s + (−1.26 + 2.19i)9-s + (−0.179 + 2.89i)10-s − 5.64i·11-s + (−1.09 − 0.826i)12-s + (0.935 + 1.62i)13-s + (0.0621 − 1.00i)14-s + (1.21 + 0.703i)15-s + (−2.78 + 2.86i)16-s + (−5.77 − 3.33i)17-s + ⋯ |
L(s) = 1 | + (−0.833 − 0.552i)2-s + (−0.342 + 0.197i)3-s + (0.389 + 0.921i)4-s + (−0.458 − 0.794i)5-s + (0.395 + 0.0244i)6-s + (0.134 + 0.232i)7-s + (0.184 − 0.982i)8-s + (−0.421 + 0.730i)9-s + (−0.0567 + 0.915i)10-s − 1.70i·11-s + (−0.315 − 0.238i)12-s + (0.259 + 0.449i)13-s + (0.0166 − 0.268i)14-s + (0.314 + 0.181i)15-s + (−0.696 + 0.717i)16-s + (−1.39 − 0.807i)17-s + ⋯ |
Λ(s)=(=(296s/2ΓC(s)L(s)(−0.901+0.431i)Λ(2−s)
Λ(s)=(=(296s/2ΓC(s+1/2)L(s)(−0.901+0.431i)Λ(1−s)
Degree: |
2 |
Conductor: |
296
= 23⋅37
|
Sign: |
−0.901+0.431i
|
Analytic conductor: |
2.36357 |
Root analytic conductor: |
1.53739 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ296(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 296, ( :1/2), −0.901+0.431i)
|
Particular Values
L(1) |
≈ |
0.0816881−0.359674i |
L(21) |
≈ |
0.0816881−0.359674i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.17+0.781i)T |
| 37 | 1+(5.59−2.38i)T |
good | 3 | 1+(0.593−0.342i)T+(1.5−2.59i)T2 |
| 5 | 1+(1.02+1.77i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−0.355−0.615i)T+(−3.5+6.06i)T2 |
| 11 | 1+5.64iT−11T2 |
| 13 | 1+(−0.935−1.62i)T+(−6.5+11.2i)T2 |
| 17 | 1+(5.77+3.33i)T+(8.5+14.7i)T2 |
| 19 | 1+(2.49+4.32i)T+(−9.5+16.4i)T2 |
| 23 | 1−2.13iT−23T2 |
| 29 | 1+9.00T+29T2 |
| 31 | 1+6.96iT−31T2 |
| 41 | 1+(−3.42−5.93i)T+(−20.5+35.5i)T2 |
| 43 | 1+6.29T+43T2 |
| 47 | 1+0.475T+47T2 |
| 53 | 1+(−10.1−5.85i)T+(26.5+45.8i)T2 |
| 59 | 1+(−5.17+8.96i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.75−6.50i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2.00+1.15i)T+(33.5−58.0i)T2 |
| 71 | 1+(1.37+2.38i)T+(−35.5+61.4i)T2 |
| 73 | 1−4.17T+73T2 |
| 79 | 1+(−13.8+8.02i)T+(39.5−68.4i)T2 |
| 83 | 1+(−6.57−3.79i)T+(41.5+71.8i)T2 |
| 89 | 1+(2.40+1.38i)T+(44.5+77.0i)T2 |
| 97 | 1−3.70iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38707701912386542128876344415, −10.72132058205843374591549199384, −9.204691677608356398158724185792, −8.706202703916002446447854376547, −7.911561870457990868318902666266, −6.53883659157406213352341778832, −5.17424770449137459232020341007, −3.94315275637081809090197679650, −2.38997653918307609200328063759, −0.35442040400165695902999697219,
1.97653475703771875816134888234, 3.92749557819741820079083849492, 5.48462861497829044418240152805, 6.72319324537084471817397618947, 7.10603595800295529332434858774, 8.292359007113204141662977783237, 9.255252371935305667217763298926, 10.44430963298397615603145384785, 10.88898669659775931858399105151, 11.99352188418744309507191814941