L(s) = 1 | + (−1.17 − 0.781i)2-s + (−0.593 + 0.342i)3-s + (0.778 + 1.84i)4-s + (−1.02 − 1.77i)5-s + (0.967 + 0.0599i)6-s + (0.355 + 0.615i)7-s + (0.521 − 2.77i)8-s + (−1.26 + 2.19i)9-s + (−0.179 + 2.89i)10-s − 5.64i·11-s + (−1.09 − 0.826i)12-s + (0.935 + 1.62i)13-s + (0.0621 − 1.00i)14-s + (1.21 + 0.703i)15-s + (−2.78 + 2.86i)16-s + (−5.77 − 3.33i)17-s + ⋯ |
L(s) = 1 | + (−0.833 − 0.552i)2-s + (−0.342 + 0.197i)3-s + (0.389 + 0.921i)4-s + (−0.458 − 0.794i)5-s + (0.395 + 0.0244i)6-s + (0.134 + 0.232i)7-s + (0.184 − 0.982i)8-s + (−0.421 + 0.730i)9-s + (−0.0567 + 0.915i)10-s − 1.70i·11-s + (−0.315 − 0.238i)12-s + (0.259 + 0.449i)13-s + (0.0166 − 0.268i)14-s + (0.314 + 0.181i)15-s + (−0.696 + 0.717i)16-s + (−1.39 − 0.807i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.901 + 0.431i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.901 + 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0816881 - 0.359674i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0816881 - 0.359674i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.17 + 0.781i)T \) |
| 37 | \( 1 + (5.59 - 2.38i)T \) |
good | 3 | \( 1 + (0.593 - 0.342i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.02 + 1.77i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.355 - 0.615i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 5.64iT - 11T^{2} \) |
| 13 | \( 1 + (-0.935 - 1.62i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (5.77 + 3.33i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.49 + 4.32i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 2.13iT - 23T^{2} \) |
| 29 | \( 1 + 9.00T + 29T^{2} \) |
| 31 | \( 1 + 6.96iT - 31T^{2} \) |
| 41 | \( 1 + (-3.42 - 5.93i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 6.29T + 43T^{2} \) |
| 47 | \( 1 + 0.475T + 47T^{2} \) |
| 53 | \( 1 + (-10.1 - 5.85i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.17 + 8.96i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.75 - 6.50i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.00 + 1.15i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.37 + 2.38i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 4.17T + 73T^{2} \) |
| 79 | \( 1 + (-13.8 + 8.02i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.57 - 3.79i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.40 + 1.38i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 3.70iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38707701912386542128876344415, −10.72132058205843374591549199384, −9.204691677608356398158724185792, −8.706202703916002446447854376547, −7.911561870457990868318902666266, −6.53883659157406213352341778832, −5.17424770449137459232020341007, −3.94315275637081809090197679650, −2.38997653918307609200328063759, −0.35442040400165695902999697219,
1.97653475703771875816134888234, 3.92749557819741820079083849492, 5.48462861497829044418240152805, 6.72319324537084471817397618947, 7.10603595800295529332434858774, 8.292359007113204141662977783237, 9.255252371935305667217763298926, 10.44430963298397615603145384785, 10.88898669659775931858399105151, 11.99352188418744309507191814941