L(s) = 1 | + (−1.32 + 0.959i)2-s + (0.206 − 0.634i)4-s + (−2.42 − 1.76i)5-s + (−0.469 + 1.44i)7-s + (−0.672 − 2.07i)8-s + 4.89·10-s + (3.29 + 0.334i)11-s + (3.32 − 2.41i)13-s + (−0.766 − 2.35i)14-s + (3.95 + 2.87i)16-s + (2.16 + 1.57i)17-s + (−2.64 − 8.14i)19-s + (−1.61 + 1.17i)20-s + (−4.68 + 2.72i)22-s + 4.20·23-s + ⋯ |
L(s) = 1 | + (−0.934 + 0.678i)2-s + (0.103 − 0.317i)4-s + (−1.08 − 0.787i)5-s + (−0.177 + 0.546i)7-s + (−0.237 − 0.731i)8-s + 1.54·10-s + (0.994 + 0.100i)11-s + (0.921 − 0.669i)13-s + (−0.204 − 0.630i)14-s + (0.988 + 0.718i)16-s + (0.526 + 0.382i)17-s + (−0.607 − 1.86i)19-s + (−0.361 + 0.262i)20-s + (−0.997 + 0.580i)22-s + 0.876·23-s + ⋯ |
Λ(s)=(=(297s/2ΓC(s)L(s)(0.992+0.124i)Λ(2−s)
Λ(s)=(=(297s/2ΓC(s+1/2)L(s)(0.992+0.124i)Λ(1−s)
Degree: |
2 |
Conductor: |
297
= 33⋅11
|
Sign: |
0.992+0.124i
|
Analytic conductor: |
2.37155 |
Root analytic conductor: |
1.53998 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ297(190,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 297, ( :1/2), 0.992+0.124i)
|
Particular Values
L(1) |
≈ |
0.621643−0.0388692i |
L(21) |
≈ |
0.621643−0.0388692i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−3.29−0.334i)T |
good | 2 | 1+(1.32−0.959i)T+(0.618−1.90i)T2 |
| 5 | 1+(2.42+1.76i)T+(1.54+4.75i)T2 |
| 7 | 1+(0.469−1.44i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−3.32+2.41i)T+(4.01−12.3i)T2 |
| 17 | 1+(−2.16−1.57i)T+(5.25+16.1i)T2 |
| 19 | 1+(2.64+8.14i)T+(−15.3+11.1i)T2 |
| 23 | 1−4.20T+23T2 |
| 29 | 1+(0.598−1.84i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−5.57+4.04i)T+(9.57−29.4i)T2 |
| 37 | 1+(0.208−0.643i)T+(−29.9−21.7i)T2 |
| 41 | 1+(2.04+6.29i)T+(−33.1+24.0i)T2 |
| 43 | 1−0.0153T+43T2 |
| 47 | 1+(−1.19−3.67i)T+(−38.0+27.6i)T2 |
| 53 | 1+(0.0180−0.0130i)T+(16.3−50.4i)T2 |
| 59 | 1+(−4.17+12.8i)T+(−47.7−34.6i)T2 |
| 61 | 1+(9.51+6.91i)T+(18.8+58.0i)T2 |
| 67 | 1+7.15T+67T2 |
| 71 | 1+(2.70+1.96i)T+(21.9+67.5i)T2 |
| 73 | 1+(2.56−7.89i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−4.38+3.18i)T+(24.4−75.1i)T2 |
| 83 | 1+(8.82+6.41i)T+(25.6+78.9i)T2 |
| 89 | 1−9.84T+89T2 |
| 97 | 1+(−12.7+9.24i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.76698358495719298778496561227, −10.74924087928995561737991198351, −9.325357242291895660181096154338, −8.783858130023780505388205171802, −8.127964401000680136718198029351, −7.09291805720013984694289927726, −6.10063362686248934683715990831, −4.57245895801512562243503581136, −3.39933412877461030897059640340, −0.76085037870410335095491986232,
1.31016897861833856353267554772, 3.22015843015374313068912806504, 4.15834887172726813022899825836, 6.06770878546604173222040510486, 7.14191071866206320151169993984, 8.159227934627136003779417339385, 8.982469914094000867179421505529, 10.13108783370154609149559430015, 10.72949419177089526839737184606, 11.66294398517976617898911402014