L(s) = 1 | + (−1.32 + 0.959i)2-s + (0.206 − 0.634i)4-s + (−2.42 − 1.76i)5-s + (−0.469 + 1.44i)7-s + (−0.672 − 2.07i)8-s + 4.89·10-s + (3.29 + 0.334i)11-s + (3.32 − 2.41i)13-s + (−0.766 − 2.35i)14-s + (3.95 + 2.87i)16-s + (2.16 + 1.57i)17-s + (−2.64 − 8.14i)19-s + (−1.61 + 1.17i)20-s + (−4.68 + 2.72i)22-s + 4.20·23-s + ⋯ |
L(s) = 1 | + (−0.934 + 0.678i)2-s + (0.103 − 0.317i)4-s + (−1.08 − 0.787i)5-s + (−0.177 + 0.546i)7-s + (−0.237 − 0.731i)8-s + 1.54·10-s + (0.994 + 0.100i)11-s + (0.921 − 0.669i)13-s + (−0.204 − 0.630i)14-s + (0.988 + 0.718i)16-s + (0.526 + 0.382i)17-s + (−0.607 − 1.86i)19-s + (−0.361 + 0.262i)20-s + (−0.997 + 0.580i)22-s + 0.876·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.124i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.621643 - 0.0388692i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.621643 - 0.0388692i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-3.29 - 0.334i)T \) |
good | 2 | \( 1 + (1.32 - 0.959i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (2.42 + 1.76i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.469 - 1.44i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.32 + 2.41i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.16 - 1.57i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (2.64 + 8.14i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 4.20T + 23T^{2} \) |
| 29 | \( 1 + (0.598 - 1.84i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.57 + 4.04i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.208 - 0.643i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.04 + 6.29i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 0.0153T + 43T^{2} \) |
| 47 | \( 1 + (-1.19 - 3.67i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.0180 - 0.0130i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-4.17 + 12.8i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (9.51 + 6.91i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 7.15T + 67T^{2} \) |
| 71 | \( 1 + (2.70 + 1.96i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.56 - 7.89i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-4.38 + 3.18i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (8.82 + 6.41i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 9.84T + 89T^{2} \) |
| 97 | \( 1 + (-12.7 + 9.24i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.76698358495719298778496561227, −10.74924087928995561737991198351, −9.325357242291895660181096154338, −8.783858130023780505388205171802, −8.127964401000680136718198029351, −7.09291805720013984694289927726, −6.10063362686248934683715990831, −4.57245895801512562243503581136, −3.39933412877461030897059640340, −0.76085037870410335095491986232,
1.31016897861833856353267554772, 3.22015843015374313068912806504, 4.15834887172726813022899825836, 6.06770878546604173222040510486, 7.14191071866206320151169993984, 8.159227934627136003779417339385, 8.982469914094000867179421505529, 10.13108783370154609149559430015, 10.72949419177089526839737184606, 11.66294398517976617898911402014